langchain/docs/extras/integrations/toolkits/powerbi.ipynb

230 lines
6.1 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"id": "9363398d",
"metadata": {},
"source": [
"# PowerBI Dataset\n",
"\n",
"This notebook showcases an agent interacting with a `Power BI Dataset`. The agent is answering more general questions about a dataset, as well as recover from errors.\n",
"\n",
"Note that, as this agent is in active development, all answers might not be correct. It runs against the [executequery endpoint](https://learn.microsoft.com/en-us/rest/api/power-bi/datasets/execute-queries), which does not allow deletes.\n",
"\n",
"### Notes:\n",
"- It relies on authentication with the azure.identity package, which can be installed with `pip install azure-identity`. Alternatively you can create the powerbi dataset with a token as a string without supplying the credentials.\n",
"- You can also supply a username to impersonate for use with datasets that have RLS enabled. \n",
"- The toolkit uses a LLM to create the query from the question, the agent uses the LLM for the overall execution.\n",
"- Testing was done mostly with a `text-davinci-003` model, codex models did not seem to perform ver well."
]
},
{
"cell_type": "markdown",
"id": "0725445e",
"metadata": {
"tags": []
},
"source": [
"## Initialization"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c82f33e9",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.agents.agent_toolkits import create_pbi_agent\n",
"from langchain.agents.agent_toolkits import PowerBIToolkit\n",
"from langchain.utilities.powerbi import PowerBIDataset\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.agents import AgentExecutor\n",
"from azure.identity import DefaultAzureCredential"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0b2c5853",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"fast_llm = ChatOpenAI(\n",
" temperature=0.5, max_tokens=1000, model_name=\"gpt-3.5-turbo\", verbose=True\n",
")\n",
"smart_llm = ChatOpenAI(temperature=0, max_tokens=100, model_name=\"gpt-4\", verbose=True)\n",
"\n",
"toolkit = PowerBIToolkit(\n",
" powerbi=PowerBIDataset(\n",
" dataset_id=\"<dataset_id>\",\n",
" table_names=[\"table1\", \"table2\"],\n",
" credential=DefaultAzureCredential(),\n",
" ),\n",
" llm=smart_llm,\n",
")\n",
"\n",
"agent_executor = create_pbi_agent(\n",
" llm=fast_llm,\n",
" toolkit=toolkit,\n",
" verbose=True,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "80c92be3",
"metadata": {},
"source": [
"## Example: describing a table"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "90f236cb",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"agent_executor.run(\"Describe table1\")"
]
},
{
"cell_type": "markdown",
"id": "b464930f",
"metadata": {},
"source": [
"## Example: simple query on a table\n",
"In this example, the agent actually figures out the correct query to get a row count of the table."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b668c907",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"agent_executor.run(\"How many records are in table1?\")"
]
},
{
"cell_type": "markdown",
"id": "f2229a2f",
"metadata": {},
"source": [
"## Example: running queries"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "865a420f",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"agent_executor.run(\"How many records are there by dimension1 in table2?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "120cd49a",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"agent_executor.run(\"What unique values are there for dimensions2 in table2\")"
]
},
{
"cell_type": "markdown",
"id": "ac584fb2",
"metadata": {},
"source": [
"## Example: add your own few-shot prompts"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ffa66827",
"metadata": {},
"outputs": [],
"source": [
"# fictional example\n",
"few_shots = \"\"\"\n",
"Question: How many rows are in the table revenue?\n",
"DAX: EVALUATE ROW(\"Number of rows\", COUNTROWS(revenue_details))\n",
"----\n",
"Question: How many rows are in the table revenue where year is not empty?\n",
"DAX: EVALUATE ROW(\"Number of rows\", COUNTROWS(FILTER(revenue_details, revenue_details[year] <> \"\")))\n",
"----\n",
"Question: What was the average of value in revenue in dollars?\n",
"DAX: EVALUATE ROW(\"Average\", AVERAGE(revenue_details[dollar_value]))\n",
"----\n",
"\"\"\"\n",
"toolkit = PowerBIToolkit(\n",
" powerbi=PowerBIDataset(\n",
" dataset_id=\"<dataset_id>\",\n",
" table_names=[\"table1\", \"table2\"],\n",
" credential=DefaultAzureCredential(),\n",
" ),\n",
" llm=smart_llm,\n",
" examples=few_shots,\n",
")\n",
"agent_executor = create_pbi_agent(\n",
" llm=fast_llm,\n",
" toolkit=toolkit,\n",
" verbose=True,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3be44685",
"metadata": {},
"outputs": [],
"source": [
"agent_executor.run(\"What was the maximum of value in revenue in dollars in 2022?\")"
]
}
],
"metadata": {
"interpreter": {
"hash": "397704579725e15f5c7cb49fe5f0341eb7531c82d19f2c29d197e8b64ab5776b"
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}