langchain/libs/community/langchain_community/utilities/cassandra_database.py

681 lines
25 KiB
Python
Raw Normal View History

"""Apache Cassandra database wrapper."""
from __future__ import annotations
import re
import traceback
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple, Union
from langchain_core.pydantic_v1 import BaseModel, Field, root_validator
if TYPE_CHECKING:
from cassandra.cluster import ResultSet, Session
IGNORED_KEYSPACES = [
"system",
"system_auth",
"system_distributed",
"system_schema",
"system_traces",
"system_views",
"datastax_sla",
"data_endpoint_auth",
]
class CassandraDatabase:
"""Apache Cassandra® database wrapper."""
def __init__(
self,
session: Optional[Session] = None,
exclude_tables: Optional[List[str]] = None,
include_tables: Optional[List[str]] = None,
cassio_init_kwargs: Optional[Dict[str, Any]] = None,
):
self._session = self._resolve_session(session, cassio_init_kwargs)
if not self._session:
raise ValueError("Session not provided and cannot be resolved")
self._exclude_keyspaces = IGNORED_KEYSPACES
self._exclude_tables = exclude_tables or []
self._include_tables = include_tables or []
def run(
self,
query: str,
fetch: str = "all",
include_columns: bool = False,
**kwargs: Any,
) -> Union[str, Sequence[Dict[str, Any]], ResultSet]:
"""Execute a CQL query and return the results."""
clean_query = self._validate_cql(query, "SELECT")
result = self._session.execute(clean_query, **kwargs)
if fetch == "all":
return list(result)
elif fetch == "one":
return result.one()._asdict() if result else {}
elif fetch == "cursor":
return result
else:
raise ValueError("Fetch parameter must be either 'one', 'all', or 'cursor'")
def run_no_throw(
self,
query: str,
fetch: str = "all",
include_columns: bool = False,
**kwargs: Any,
) -> Union[str, Sequence[Dict[str, Any]], ResultSet]:
"""Execute a CQL query and return the results or an error message."""
try:
return self.run(query, fetch, include_columns, **kwargs)
except Exception as e:
"""Format the error message"""
return f"Error: {e}\n{traceback.format_exc()}"
def get_keyspace_tables_str_no_throw(self, keyspace: str) -> str:
"""Get the tables for the specified keyspace."""
try:
schema_string = self.get_keyspace_tables_str(keyspace)
return schema_string
except Exception as e:
"""Format the error message"""
return f"Error: {e}\n{traceback.format_exc()}"
def get_keyspace_tables_str(self, keyspace: str) -> str:
"""Get the tables for the specified keyspace."""
tables = self.get_keyspace_tables(keyspace)
schema_string = ""
for table in tables:
schema_string += table.as_markdown() + "\n\n"
return schema_string
def get_keyspace_tables(self, keyspace: str) -> List[Table]:
"""Get the Table objects for the specified keyspace."""
schema = self._resolve_schema([keyspace])
if keyspace in schema:
return schema[keyspace]
else:
return []
def get_table_data_no_throw(
self, keyspace: str, table: str, predicate: str, limit: int
) -> str:
"""Get data from the specified table in the specified keyspace. Optionally can
take a predicate for the WHERE clause and a limit."""
try:
return self.get_table_data(keyspace, table, predicate, limit)
except Exception as e:
"""Format the error message"""
return f"Error: {e}\n{traceback.format_exc()}"
# This is a more basic string building function that doesn't use a query builder
# or prepared statements
# TODO: Refactor to use prepared statements
def get_table_data(
self, keyspace: str, table: str, predicate: str, limit: int
) -> str:
"""Get data from the specified table in the specified keyspace."""
query = f"SELECT * FROM {keyspace}.{table}"
if predicate:
query += f" WHERE {predicate}"
if limit:
query += f" LIMIT {limit}"
query += ";"
result = self.run(query, fetch="all")
data = "\n".join(str(row) for row in result)
return data
def get_context(self) -> Dict[str, Any]:
"""Return db context that you may want in agent prompt."""
keyspaces = self._fetch_keyspaces()
return {"keyspaces": ", ".join(keyspaces)}
def format_keyspace_to_markdown(
self, keyspace: str, tables: Optional[List[Table]] = None
) -> str:
"""
Generates a markdown representation of the schema for a specific keyspace
by iterating over all tables within that keyspace and calling their
as_markdown method.
Parameters:
- keyspace (str): The name of the keyspace to generate markdown
documentation for.
- tables (list[Table]): list of tables in the keyspace; it will be resolved
if not provided.
Returns:
A string containing the markdown representation of the specified
keyspace schema.
"""
if not tables:
tables = self.get_keyspace_tables(keyspace)
if tables:
output = f"## Keyspace: {keyspace}\n\n"
if tables:
for table in tables:
output += table.as_markdown(include_keyspace=False, header_level=3)
output += "\n\n"
else:
output += "No tables present in keyspace\n\n"
return output
else:
return ""
def format_schema_to_markdown(self) -> str:
"""
Generates a markdown representation of the schema for all keyspaces and tables
within the CassandraDatabase instance. This method utilizes the
format_keyspace_to_markdown method to create markdown sections for each
keyspace, assembling them into a comprehensive schema document.
Iterates through each keyspace in the database, utilizing
format_keyspace_to_markdown to generate markdown for each keyspace's schema,
including details of its tables. These sections are concatenated to form a
single markdown document that represents the schema of the entire database or
the subset of keyspaces that have been resolved in this instance.
Returns:
A markdown string that documents the schema of all resolved keyspaces and
their tables within this CassandraDatabase instance. This includes keyspace
names, table names, comments, columns, partition keys, clustering keys,
and indexes for each table.
"""
schema = self._resolve_schema()
output = "# Cassandra Database Schema\n\n"
for keyspace, tables in schema.items():
output += f"{self.format_keyspace_to_markdown(keyspace, tables)}\n\n"
return output
def _validate_cql(self, cql: str, type: str = "SELECT") -> str:
"""
Validates a CQL query string for basic formatting and safety checks.
Ensures that `cql` starts with the specified type (e.g., SELECT) and does
not contain content that could indicate CQL injection vulnerabilities.
Parameters:
- cql (str): The CQL query string to be validated.
- type (str): The expected starting keyword of the query, used to verify
that the query begins with the correct operation type
(e.g., "SELECT", "UPDATE"). Defaults to "SELECT".
Returns:
- str: The trimmed and validated CQL query string without a trailing semicolon.
Raises:
- ValueError: If the value of `type` is not supported
- DatabaseError: If `cql` is considered unsafe
"""
SUPPORTED_TYPES = ["SELECT"]
if type and type.upper() not in SUPPORTED_TYPES:
raise ValueError(
f"""Unsupported CQL type: {type}. Supported types:
{SUPPORTED_TYPES}"""
)
# Basic sanity checks
cql_trimmed = cql.strip()
if not cql_trimmed.upper().startswith(type.upper()):
raise DatabaseError(f"CQL must start with {type.upper()}.")
# Allow a trailing semicolon, but remove (it is optional with the Python driver)
cql_trimmed = cql_trimmed.rstrip(";")
# Consider content within matching quotes to be "safe"
# Remove single-quoted strings
cql_sanitized = re.sub(r"'.*?'", "", cql_trimmed)
# Remove double-quoted strings
cql_sanitized = re.sub(r'".*?"', "", cql_sanitized)
# Find unsafe content in the remaining CQL
if ";" in cql_sanitized:
raise DatabaseError(
"""Potentially unsafe CQL, as it contains a ; at a
place other than the end or within quotation marks."""
)
# The trimmed query, before modifications
return cql_trimmed
def _fetch_keyspaces(self, keyspace_list: Optional[List[str]] = None) -> List[str]:
"""
Fetches a list of keyspace names from the Cassandra database. The list can be
filtered by a provided list of keyspace names or by excluding predefined
keyspaces.
Parameters:
- keyspace_list (Optional[List[str]]): A list of keyspace names to specifically
include. If provided and not empty, the method returns only the keyspaces
present in this list. If not provided or empty, the method returns all
keyspaces except those specified in the _exclude_keyspaces attribute.
Returns:
- List[str]: A list of keyspace names according to the filtering criteria.
"""
all_keyspaces = self.run(
"SELECT keyspace_name FROM system_schema.keyspaces", fetch="all"
)
# Type check to ensure 'all_keyspaces' is a sequence of dictionaries
if not isinstance(all_keyspaces, Sequence):
raise TypeError("Expected a sequence of dictionaries from 'run' method.")
# Filtering keyspaces based on 'keyspace_list' and '_exclude_keyspaces'
filtered_keyspaces = []
for ks in all_keyspaces:
if not isinstance(ks, Dict):
continue # Skip if the row is not a dictionary.
keyspace_name = ks["keyspace_name"]
if keyspace_list and keyspace_name in keyspace_list:
filtered_keyspaces.append(keyspace_name)
elif not keyspace_list and keyspace_name not in self._exclude_keyspaces:
filtered_keyspaces.append(keyspace_name)
return filtered_keyspaces
def _fetch_schema_data(self, keyspace_list: List[str]) -> Tuple:
"""
Fetches schema data, including tables, columns, and indexes, filtered by a
list of keyspaces. This method constructs CQL queries to retrieve detailed
schema information from the specified keyspaces and executes them to gather
data about tables, columns, and indexes within those keyspaces.
Parameters:
- keyspace_list (List[str]): A list of keyspace names from which to fetch
schema data.
Returns:
- Tuple[List[Dict[str, Any]], List[Dict[str, Any]], List[Dict[str, Any]]]: A
tuple containing three lists:
- The first list contains dictionaries of table details (keyspace name,
table name, and comment).
- The second list contains dictionaries of column details (keyspace name,
table name, column name, type, kind, and position).
- The third list contains dictionaries of index details (keyspace name,
table name, index name, kind, and options).
This method allows for efficiently fetching schema information for multiple
keyspaces in a single operation,
enabling applications to programmatically analyze or document the database
schema.
"""
# Construct IN clause for CQL query
keyspace_in_clause = ", ".join([f"'{ks}'" for ks in keyspace_list])
# Fetch filtered table details
tables_query = f"""SELECT keyspace_name, table_name, comment
FROM system_schema.tables
WHERE keyspace_name
IN ({keyspace_in_clause})"""
tables_data = self.run(tables_query, fetch="all")
# Fetch filtered column details
columns_query = f"""SELECT keyspace_name, table_name, column_name, type,
kind, clustering_order, position
FROM system_schema.columns
WHERE keyspace_name
IN ({keyspace_in_clause})"""
columns_data = self.run(columns_query, fetch="all")
# Fetch filtered index details
indexes_query = f"""SELECT keyspace_name, table_name, index_name,
kind, options
FROM system_schema.indexes
WHERE keyspace_name
IN ({keyspace_in_clause})"""
indexes_data = self.run(indexes_query, fetch="all")
return tables_data, columns_data, indexes_data
def _resolve_schema(
self, keyspace_list: Optional[List[str]] = None
) -> Dict[str, List[Table]]:
"""
Efficiently fetches and organizes Cassandra table schema information,
such as comments, columns, and indexes, into a dictionary mapping keyspace
names to lists of Table objects.
Returns:
A dictionary with keyspace names as keys and lists of Table objects as values,
where each Table object is populated with schema details appropriate for its
keyspace and table name.
"""
if not keyspace_list:
keyspace_list = self._fetch_keyspaces()
tables_data, columns_data, indexes_data = self._fetch_schema_data(keyspace_list)
keyspace_dict: dict = {}
for table_data in tables_data:
keyspace = table_data.keyspace_name
table_name = table_data.table_name
comment = table_data.comment
if self._include_tables and table_name not in self._include_tables:
continue
if self._exclude_tables and table_name in self._exclude_tables:
continue
# Filter columns and indexes for this table
table_columns = [
(c.column_name, c.type)
for c in columns_data
if c.keyspace_name == keyspace and c.table_name == table_name
]
partition_keys = [
c.column_name
for c in columns_data
if c.kind == "partition_key"
and c.keyspace_name == keyspace
and c.table_name == table_name
]
clustering_keys = [
(c.column_name, c.clustering_order)
for c in columns_data
if c.kind == "clustering"
and c.keyspace_name == keyspace
and c.table_name == table_name
]
table_indexes = [
(c.index_name, c.kind, c.options)
for c in indexes_data
if c.keyspace_name == keyspace and c.table_name == table_name
]
table_obj = Table(
keyspace=keyspace,
table_name=table_name,
comment=comment,
columns=table_columns,
partition=partition_keys,
clustering=clustering_keys,
indexes=table_indexes,
)
if keyspace not in keyspace_dict:
keyspace_dict[keyspace] = []
keyspace_dict[keyspace].append(table_obj)
return keyspace_dict
def _resolve_session(
self,
session: Optional[Session] = None,
cassio_init_kwargs: Optional[Dict[str, Any]] = None,
) -> Session:
"""
Attempts to resolve and return a Session object for use in database operations.
This function follows a specific order of precedence to determine the
appropriate session to use:
1. `session` parameter if given,
2. Existing `cassio` session,
3. A new `cassio` session derived from `cassio_init_kwargs`,
4. `None`
Parameters:
- session (Optional[Session]): An optional session to use directly.
- cassio_init_kwargs (Optional[Dict[str, Any]]): An optional dictionary of
keyword arguments to `cassio`.
Returns:
- Session: The resolved session object if successful, or `None` if the session
cannot be resolved.
Raises:
- ValueError: If `cassio_init_kwargs` is provided but is not a dictionary of
keyword arguments.
"""
# Prefer given session
if session:
return session
# If a session is not provided, create one using cassio if available
# dynamically import cassio to avoid circular imports
try:
import cassio.config
except ImportError:
raise ValueError(
"cassio package not found, please install with" " `pip install cassio`"
)
# Use pre-existing session on cassio
s = cassio.config.resolve_session()
if s:
return s
# Try to init and return cassio session
if cassio_init_kwargs:
if isinstance(cassio_init_kwargs, dict):
cassio.init(**cassio_init_kwargs)
s = cassio.config.check_resolve_session()
return s
else:
raise ValueError("cassio_init_kwargs must be a keyword dictionary")
# return None if we're not able to resolve
return None
class DatabaseError(Exception):
"""Exception raised for errors in the database schema.
Attributes:
message -- explanation of the error
"""
def __init__(self, message: str):
self.message = message
super().__init__(self.message)
class Table(BaseModel):
keyspace: str
"""The keyspace in which the table exists."""
table_name: str
"""The name of the table."""
comment: Optional[str] = None
"""The comment associated with the table."""
columns: List[Tuple[str, str]] = Field(default_factory=list)
partition: List[str] = Field(default_factory=list)
clustering: List[Tuple[str, str]] = Field(default_factory=list)
indexes: List[Tuple[str, str, str]] = Field(default_factory=list)
class Config:
frozen = True
@root_validator()
def check_required_fields(cls, class_values: dict) -> dict:
if not class_values["columns"]:
raise ValueError("non-empty column list for must be provided")
if not class_values["partition"]:
raise ValueError("non-empty partition list must be provided")
return class_values
@classmethod
def from_database(
cls, keyspace: str, table_name: str, db: CassandraDatabase
) -> Table:
columns, partition, clustering = cls._resolve_columns(keyspace, table_name, db)
return cls(
keyspace=keyspace,
table_name=table_name,
comment=cls._resolve_comment(keyspace, table_name, db),
columns=columns,
partition=partition,
clustering=clustering,
indexes=cls._resolve_indexes(keyspace, table_name, db),
)
def as_markdown(
self, include_keyspace: bool = True, header_level: Optional[int] = None
) -> str:
"""
Generates a Markdown representation of the Cassandra table schema, allowing for
customizable header levels for the table name section.
Parameters:
- include_keyspace (bool): If True, includes the keyspace in the output.
Defaults to True.
- header_level (Optional[int]): Specifies the markdown header level for the
table name.
If None, the table name is included without a header. Defaults to None
(no header level).
Returns:
- str: A string in Markdown format detailing the table name
(with optional header level),
keyspace (optional), comment, columns, partition keys, clustering keys
(with optional clustering order),
and indexes.
"""
output = ""
if header_level is not None:
output += f"{'#' * header_level} "
output += f"Table Name: {self.table_name}\n"
if include_keyspace:
output += f"- Keyspace: {self.keyspace}\n"
if self.comment:
output += f"- Comment: {self.comment}\n"
output += "- Columns\n"
for column, type in self.columns:
output += f" - {column} ({type})\n"
output += f"- Partition Keys: ({', '.join(self.partition)})\n"
output += "- Clustering Keys: "
if self.clustering:
cluster_list = []
for column, clustering_order in self.clustering:
if clustering_order.lower() == "none":
cluster_list.append(column)
else:
cluster_list.append(f"{column} {clustering_order}")
output += f"({', '.join(cluster_list)})\n"
if self.indexes:
output += "- Indexes\n"
for name, kind, options in self.indexes:
output += f" - {name} : kind={kind}, options={options}\n"
return output
@staticmethod
def _resolve_comment(
keyspace: str, table_name: str, db: CassandraDatabase
) -> Optional[str]:
result = db.run(
f"""SELECT comment
FROM system_schema.tables
WHERE keyspace_name = '{keyspace}'
AND table_name = '{table_name}';""",
fetch="one",
)
if isinstance(result, dict):
comment = result.get("comment")
if comment:
return comment
else:
return None # Default comment if none is found
else:
raise ValueError(
f"""Unexpected result type from db.run:
{type(result).__name__}"""
)
@staticmethod
def _resolve_columns(
keyspace: str, table_name: str, db: CassandraDatabase
) -> Tuple[List[Tuple[str, str]], List[str], List[Tuple[str, str]]]:
columns = []
partition_info = []
cluster_info = []
results = db.run(
f"""SELECT column_name, type, kind, clustering_order, position
FROM system_schema.columns
WHERE keyspace_name = '{keyspace}'
AND table_name = '{table_name}';"""
)
# Type check to ensure 'results' is a sequence of dictionaries.
if not isinstance(results, Sequence):
raise TypeError("Expected a sequence of dictionaries from 'run' method.")
for row in results:
if not isinstance(row, Dict):
continue # Skip if the row is not a dictionary.
columns.append((row["column_name"], row["type"]))
if row["kind"] == "partition_key":
partition_info.append((row["column_name"], row["position"]))
elif row["kind"] == "clustering":
cluster_info.append(
(row["column_name"], row["clustering_order"], row["position"])
)
partition = [
column_name for column_name, _ in sorted(partition_info, key=lambda x: x[1])
]
cluster = [
(column_name, clustering_order)
for column_name, clustering_order, _ in sorted(
cluster_info, key=lambda x: x[2]
)
]
return columns, partition, cluster
@staticmethod
def _resolve_indexes(
keyspace: str, table_name: str, db: CassandraDatabase
) -> List[Tuple[str, str, str]]:
indexes = []
results = db.run(
f"""SELECT index_name, kind, options
FROM system_schema.indexes
WHERE keyspace_name = '{keyspace}'
AND table_name = '{table_name}';"""
)
# Type check to ensure 'results' is a sequence of dictionaries
if not isinstance(results, Sequence):
raise TypeError("Expected a sequence of dictionaries from 'run' method.")
for row in results:
if not isinstance(row, Dict):
continue # Skip if the row is not a dictionary.
# Convert 'options' to string if it's not already,
# assuming it's JSON-like and needs conversion
index_options = row["options"]
if not isinstance(index_options, str):
# Assuming index_options needs to be serialized or simply converted
index_options = str(index_options)
indexes.append((row["index_name"], row["kind"], index_options))
return indexes