2023-04-19 04:41:03 +00:00
|
|
|
from typing import Any, Dict, List
|
|
|
|
|
|
|
|
from langchain.memory.chat_memory import BaseChatMemory, get_prompt_input_key
|
|
|
|
from langchain.vectorstores.base import VectorStoreRetriever
|
2023-07-22 01:44:32 +00:00
|
|
|
from pydantic import Field
|
2023-04-19 04:41:03 +00:00
|
|
|
|
|
|
|
|
|
|
|
class AutoGPTMemory(BaseChatMemory):
|
|
|
|
retriever: VectorStoreRetriever = Field(exclude=True)
|
|
|
|
"""VectorStoreRetriever object to connect to."""
|
|
|
|
|
|
|
|
@property
|
|
|
|
def memory_variables(self) -> List[str]:
|
|
|
|
return ["chat_history", "relevant_context"]
|
|
|
|
|
|
|
|
def _get_prompt_input_key(self, inputs: Dict[str, Any]) -> str:
|
|
|
|
"""Get the input key for the prompt."""
|
|
|
|
if self.input_key is None:
|
|
|
|
return get_prompt_input_key(inputs, self.memory_variables)
|
|
|
|
return self.input_key
|
|
|
|
|
|
|
|
def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
|
input_key = self._get_prompt_input_key(inputs)
|
|
|
|
query = inputs[input_key]
|
|
|
|
docs = self.retriever.get_relevant_documents(query)
|
|
|
|
return {
|
|
|
|
"chat_history": self.chat_memory.messages[-10:],
|
|
|
|
"relevant_context": docs,
|
|
|
|
}
|