mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
209 lines
7.5 KiB
Python
209 lines
7.5 KiB
Python
|
from typing import Any, Dict, List, Optional
|
||
|
|
||
|
from langchain_core.embeddings import Embeddings
|
||
|
from langchain_core.pydantic_v1 import BaseModel, Extra
|
||
|
|
||
|
|
||
|
class QuantizedBiEncoderEmbeddings(BaseModel, Embeddings):
|
||
|
"""Quantized bi-encoders embedding models.
|
||
|
|
||
|
Please ensure that you have installed optimum-intel and ipex.
|
||
|
|
||
|
Input:
|
||
|
model_name: str = Model name.
|
||
|
max_seq_len: int = The maximum sequence length for tokenization. (default 512)
|
||
|
pooling_strategy: str =
|
||
|
"mean" or "cls", pooling strategy for the final layer. (default "mean")
|
||
|
query_instruction: Optional[str] =
|
||
|
An instruction to add to the query before embedding. (default None)
|
||
|
document_instruction: Optional[str] =
|
||
|
An instruction to add to each document before embedding. (default None)
|
||
|
padding: Optional[bool] =
|
||
|
Whether to add padding during tokenization or not. (default True)
|
||
|
model_kwargs: Optional[Dict] =
|
||
|
Parameters to add to the model during initialization. (default {})
|
||
|
encode_kwargs: Optional[Dict] =
|
||
|
Parameters to add during the embedding forward pass. (default {})
|
||
|
|
||
|
Example:
|
||
|
|
||
|
from langchain_community.embeddings import QuantizedBiEncoderEmbeddings
|
||
|
|
||
|
model_name = "Intel/bge-small-en-v1.5-rag-int8-static"
|
||
|
encode_kwargs = {'normalize_embeddings': True}
|
||
|
hf = QuantizedBiEncoderEmbeddings(
|
||
|
model_name,
|
||
|
encode_kwargs=encode_kwargs,
|
||
|
query_instruction="Represent this sentence for searching relevant passages: "
|
||
|
)
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
model_name: str,
|
||
|
max_seq_len: int = 512,
|
||
|
pooling_strategy: str = "mean", # "mean" or "cls"
|
||
|
query_instruction: Optional[str] = None,
|
||
|
document_instruction: Optional[str] = None,
|
||
|
padding: bool = True,
|
||
|
model_kwargs: Optional[Dict] = None,
|
||
|
encode_kwargs: Optional[Dict] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> None:
|
||
|
super().__init__(**kwargs)
|
||
|
self.model_name_or_path = model_name
|
||
|
self.max_seq_len = max_seq_len
|
||
|
self.pooling = pooling_strategy
|
||
|
self.padding = padding
|
||
|
self.encode_kwargs = encode_kwargs or {}
|
||
|
self.model_kwargs = model_kwargs or {}
|
||
|
|
||
|
self.normalize = self.encode_kwargs.get("normalize_embeddings", False)
|
||
|
self.batch_size = self.encode_kwargs.get("batch_size", 32)
|
||
|
|
||
|
self.query_instruction = query_instruction
|
||
|
self.document_instruction = document_instruction
|
||
|
|
||
|
self.load_model()
|
||
|
|
||
|
def load_model(self) -> None:
|
||
|
try:
|
||
|
from transformers import AutoTokenizer
|
||
|
except ImportError as e:
|
||
|
raise ImportError(
|
||
|
"Unable to import transformers, please install with "
|
||
|
"`pip install -U transformers`."
|
||
|
) from e
|
||
|
try:
|
||
|
from optimum.intel import IPEXModel
|
||
|
|
||
|
self.transformer_model = IPEXModel.from_pretrained(
|
||
|
self.model_name_or_path, **self.model_kwargs
|
||
|
)
|
||
|
except Exception as e:
|
||
|
raise Exception(
|
||
|
f"""
|
||
|
Failed to load model {self.model_name_or_path}, due to the following error:
|
||
|
{e}
|
||
|
Please ensure that you have installed optimum-intel and ipex correctly,using:
|
||
|
|
||
|
pip install optimum[neural-compressor]
|
||
|
pip install intel_extension_for_pytorch
|
||
|
|
||
|
For more information, please visit:
|
||
|
* Install optimum-intel as shown here: https://github.com/huggingface/optimum-intel.
|
||
|
* Install IPEX as shown here: https://intel.github.io/intel-extension-for-pytorch/index.html#installation?platform=cpu&version=v2.2.0%2Bcpu.
|
||
|
"""
|
||
|
)
|
||
|
self.transformer_tokenizer = AutoTokenizer.from_pretrained(
|
||
|
pretrained_model_name_or_path=self.model_name_or_path,
|
||
|
)
|
||
|
self.transformer_model.eval()
|
||
|
|
||
|
class Config:
|
||
|
"""Configuration for this pydantic object."""
|
||
|
|
||
|
extra = Extra.allow
|
||
|
|
||
|
def _embed(self, inputs: Any) -> Any:
|
||
|
try:
|
||
|
import torch
|
||
|
except ImportError as e:
|
||
|
raise ImportError(
|
||
|
"Unable to import torch, please install with `pip install -U torch`."
|
||
|
) from e
|
||
|
with torch.inference_mode():
|
||
|
outputs = self.transformer_model(**inputs)
|
||
|
if self.pooling == "mean":
|
||
|
emb = self._mean_pooling(outputs, inputs["attention_mask"])
|
||
|
elif self.pooling == "cls":
|
||
|
emb = self._cls_pooling(outputs)
|
||
|
else:
|
||
|
raise ValueError("pooling method no supported")
|
||
|
|
||
|
if self.normalize:
|
||
|
emb = torch.nn.functional.normalize(emb, p=2, dim=1)
|
||
|
return emb
|
||
|
|
||
|
@staticmethod
|
||
|
def _cls_pooling(outputs: Any) -> Any:
|
||
|
if isinstance(outputs, dict):
|
||
|
token_embeddings = outputs["last_hidden_state"]
|
||
|
else:
|
||
|
token_embeddings = outputs[0]
|
||
|
return token_embeddings[:, 0]
|
||
|
|
||
|
@staticmethod
|
||
|
def _mean_pooling(outputs: Any, attention_mask: Any) -> Any:
|
||
|
try:
|
||
|
import torch
|
||
|
except ImportError as e:
|
||
|
raise ImportError(
|
||
|
"Unable to import torch, please install with `pip install -U torch`."
|
||
|
) from e
|
||
|
if isinstance(outputs, dict):
|
||
|
token_embeddings = outputs["last_hidden_state"]
|
||
|
else:
|
||
|
# First element of model_output contains all token embeddings
|
||
|
token_embeddings = outputs[0]
|
||
|
input_mask_expanded = (
|
||
|
attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
||
|
)
|
||
|
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
|
||
|
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
||
|
return sum_embeddings / sum_mask
|
||
|
|
||
|
def _embed_text(self, texts: List[str]) -> List[List[float]]:
|
||
|
inputs = self.transformer_tokenizer(
|
||
|
texts,
|
||
|
max_length=self.max_seq_len,
|
||
|
truncation=True,
|
||
|
padding=self.padding,
|
||
|
return_tensors="pt",
|
||
|
)
|
||
|
return self._embed(inputs).tolist()
|
||
|
|
||
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||
|
"""Embed a list of text documents using the Optimized Embedder model.
|
||
|
|
||
|
Input:
|
||
|
texts: List[str] = List of text documents to embed.
|
||
|
Output:
|
||
|
List[List[float]] = The embeddings of each text document.
|
||
|
"""
|
||
|
try:
|
||
|
import pandas as pd
|
||
|
except ImportError as e:
|
||
|
raise ImportError(
|
||
|
"Unable to import pandas, please install with `pip install -U pandas`."
|
||
|
) from e
|
||
|
try:
|
||
|
import tqdm
|
||
|
except ImportError as e:
|
||
|
raise ImportError(
|
||
|
"Unable to import tqdm, please install with `pip install -U tqdm`."
|
||
|
) from e
|
||
|
docs = [
|
||
|
self.document_instruction + d if self.document_instruction else d
|
||
|
for d in texts
|
||
|
]
|
||
|
|
||
|
# group into batches
|
||
|
text_list_df = pd.DataFrame(docs, columns=["texts"]).reset_index()
|
||
|
|
||
|
# assign each example with its batch
|
||
|
text_list_df["batch_index"] = text_list_df["index"] // self.batch_size
|
||
|
|
||
|
# create groups
|
||
|
batches = list(text_list_df.groupby(["batch_index"])["texts"].apply(list))
|
||
|
|
||
|
vectors = []
|
||
|
for batch in tqdm(batches, desc="Batches"):
|
||
|
vectors += self._embed_text(batch)
|
||
|
return vectors
|
||
|
|
||
|
def embed_query(self, text: str) -> List[float]:
|
||
|
if self.query_instruction:
|
||
|
text = self.query_instruction + text
|
||
|
return self._embed_text([text])[0]
|