langchain/docs/modules/models/llms/integrations/petals_example.ipynb

198 lines
4.0 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Petals\n",
"\n",
"`Petals` runs 100B+ language models at home, BitTorrent-style.\n",
"\n",
"This notebook goes over how to use Langchain with [Petals](https://github.com/bigscience-workshop/petals)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Install petals\n",
"The `petals` package is required to use the Petals API. Install `petals` using `pip3 install petals`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip3 install petals"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Imports"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from langchain.llms import Petals\n",
"from langchain import PromptTemplate, LLMChain"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Set the Environment API Key\n",
"Make sure to get [your API key](https://huggingface.co/docs/api-inference/quicktour#get-your-api-token) from Huggingface."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdin",
"output_type": "stream",
"text": [
" ········\n"
]
}
],
"source": [
"from getpass import getpass\n",
"\n",
"HUGGINGFACE_API_KEY = getpass()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"os.environ[\"HUGGINGFACE_API_KEY\"] = HUGGINGFACE_API_KEY"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create the Petals instance\n",
"You can specify different parameters such as the model name, max new tokens, temperature, etc."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Downloading: 1%|▏ | 40.8M/7.19G [00:24<15:44, 7.57MB/s]"
]
}
],
"source": [
"# this can take several minutes to download big files!\n",
"\n",
"llm = Petals(model_name=\"bigscience/bloom-petals\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create a Prompt Template\n",
"We will create a prompt template for Question and Answer."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"template = \"\"\"Question: {question}\n",
"\n",
"Answer: Let's think step by step.\"\"\"\n",
"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initiate the LLMChain"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm_chain = LLMChain(prompt=prompt, llm=llm)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Run the LLMChain\n",
"Provide a question and run the LLMChain."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"question = \"What NFL team won the Super Bowl in the year Justin Beiber was born?\"\n",
"\n",
"llm_chain.run(question)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
},
"vscode": {
"interpreter": {
"hash": "a0a0263b650d907a3bfe41c0f8d6a63a071b884df3cfdc1579f00cdc1aed6b03"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}