langchain/docs/modules/models/llms/integrations/ctransformers.ipynb

126 lines
2.5 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# C Transformers\n",
"\n",
"The [C Transformers](https://github.com/marella/ctransformers) library provides Python bindings for GGML models.\n",
"\n",
"This example goes over how to use LangChain to interact with `C Transformers` [models](https://github.com/marella/ctransformers#supported-models)."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"**Install**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install ctransformers"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"**Load Model**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms import CTransformers\n",
"\n",
"llm = CTransformers(model='marella/gpt-2-ggml')"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"**Generate Text**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(llm('AI is going to'))"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"**Streaming**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
"\n",
"llm = CTransformers(model='marella/gpt-2-ggml', callbacks=[StreamingStdOutCallbackHandler()])\n",
"\n",
"response = llm('AI is going to')"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"**LLMChain**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain import PromptTemplate, LLMChain\n",
"\n",
"template = \"\"\"Question: {question}\n",
"\n",
"Answer:\"\"\"\n",
"\n",
"prompt = PromptTemplate(template=template, input_variables=['question'])\n",
"\n",
"llm_chain = LLMChain(prompt=prompt, llm=llm)\n",
"\n",
"response = llm_chain.run('What is AI?')"
]
}
],
"metadata": {
"language_info": {
"name": "python"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}