langchain/docs/modules/models/llms/integrations/azure_openai_example.ipynb

189 lines
5.0 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"id": "9e9b7651",
"metadata": {},
"source": [
"# Azure OpenAI\n",
"\n",
"This notebook goes over how to use Langchain with [Azure OpenAI](https://aka.ms/azure-openai).\n",
"\n",
"The Azure OpenAI API is compatible with OpenAI's API. The `openai` Python package makes it easy to use both OpenAI and Azure OpenAI. You can call Azure OpenAI the same way you call OpenAI with the exceptions noted below.\n",
"\n",
"## API configuration\n",
"You can configure the `openai` package to use Azure OpenAI using environment variables. The following is for `bash`:\n",
"\n",
"```bash\n",
"# Set this to `azure`\n",
"export OPENAI_API_TYPE=azure\n",
"# The API version you want to use: set this to `2022-12-01` for the released version.\n",
"export OPENAI_API_VERSION=2022-12-01\n",
"# The base URL for your Azure OpenAI resource. You can find this in the Azure portal under your Azure OpenAI resource.\n",
"export OPENAI_API_BASE=https://your-resource-name.openai.azure.com\n",
"# The API key for your Azure OpenAI resource. You can find this in the Azure portal under your Azure OpenAI resource.\n",
"export OPENAI_API_KEY=<your Azure OpenAI API key>\n",
"```\n",
"\n",
"Alternatively, you can configure the API right within your running Python environment:\n",
"\n",
"```python\n",
"import os\n",
"os.environ[\"OPENAI_API_TYPE\"] = \"azure\"\n",
"...\n",
"```\n",
"\n",
"## Deployments\n",
"With Azure OpenAI, you set up your own deployments of the common GPT-3 and Codex models. When calling the API, you need to specify the deployment you want to use.\n",
"\n",
"Let's say your deployment name is `text-davinci-002-prod`. In the `openai` Python API, you can specify this deployment with the `engine` parameter. For example:\n",
"\n",
"```python\n",
"import openai\n",
"\n",
"response = openai.Completion.create(\n",
" engine=\"text-davinci-002-prod\",\n",
" prompt=\"This is a test\",\n",
" max_tokens=5\n",
")\n",
"```\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "89fdb593-5a42-4098-87b7-1496fa511b1c",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!pip install openai"
]
},
{
"cell_type": "code",
2023-05-06 17:16:00 +00:00
"execution_count": 3,
"id": "faacfa54",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"os.environ[\"OPENAI_API_TYPE\"] = \"azure\"\n",
"os.environ[\"OPENAI_API_VERSION\"] = \"2022-12-01\"\n",
"os.environ[\"OPENAI_API_BASE\"] = \"...\"\n",
"os.environ[\"OPENAI_API_KEY\"] = \"...\""
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "8fad2a6e",
"metadata": {},
"outputs": [],
"source": [
"# Import Azure OpenAI\n",
"from langchain.llms import AzureOpenAI"
]
},
{
"cell_type": "code",
2023-05-06 17:16:00 +00:00
"execution_count": 5,
"id": "8c80213a",
"metadata": {},
"outputs": [],
"source": [
"# Create an instance of Azure OpenAI\n",
"# Replace the deployment name with your own\n",
2023-05-06 17:16:00 +00:00
"llm = AzureOpenAI(\n",
" deployment_name=\"td2\",\n",
" model_name=\"text-davinci-002\", \n",
")"
]
},
{
"cell_type": "code",
2023-05-06 17:16:00 +00:00
"execution_count": 6,
"id": "592dc404",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
2023-05-06 17:16:00 +00:00
"\"\\n\\nWhy couldn't the bicycle stand up by itself? Because it was...two tired!\""
]
},
2023-05-06 17:16:00 +00:00
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Run the LLM\n",
"llm(\"Tell me a joke\")"
]
},
{
"cell_type": "markdown",
"id": "bbfebea1",
"metadata": {},
"source": [
"We can also print the LLM and see its custom print."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "9c33fa19",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1mAzureOpenAI\u001b[0m\n",
"Params: {'deployment_name': 'text-davinci-002', 'model_name': 'text-davinci-002', 'temperature': 0.7, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1}\n"
]
}
],
"source": [
"print(llm)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5a8b5917",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
2023-05-06 17:16:00 +00:00
"version": "3.9.1"
},
"vscode": {
"interpreter": {
"hash": "3bae61d45a4f4d73ecea8149862d4bfbae7d4d4a2f71b6e609a1be8f6c8d4298"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}