2023-12-11 21:53:30 +00:00
|
|
|
import json
|
|
|
|
from typing import Any, Dict, List, Optional, cast
|
|
|
|
|
2024-01-24 01:08:51 +00:00
|
|
|
from langchain_core.callbacks.manager import CallbackManagerForLLMRun
|
|
|
|
from langchain_core.language_models.chat_models import BaseChatModel
|
2023-12-11 21:53:30 +00:00
|
|
|
from langchain_core.messages import (
|
|
|
|
AIMessage,
|
|
|
|
BaseMessage,
|
|
|
|
ChatMessage,
|
|
|
|
HumanMessage,
|
|
|
|
SystemMessage,
|
|
|
|
)
|
2024-01-24 01:08:51 +00:00
|
|
|
from langchain_core.outputs import ChatGeneration, ChatResult
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
from langchain_community.llms.azureml_endpoint import (
|
2024-01-24 01:08:51 +00:00
|
|
|
AzureMLBaseEndpoint,
|
|
|
|
AzureMLEndpointApiType,
|
2023-12-11 21:53:30 +00:00
|
|
|
ContentFormatterBase,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class LlamaContentFormatter(ContentFormatterBase):
|
2024-02-05 21:42:59 +00:00
|
|
|
def __init__(self) -> None:
|
2024-01-24 01:08:51 +00:00
|
|
|
raise TypeError(
|
|
|
|
"`LlamaContentFormatter` is deprecated for chat models. Use "
|
|
|
|
"`LlamaChatContentFormatter` instead."
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class LlamaChatContentFormatter(ContentFormatterBase):
|
2023-12-11 21:53:30 +00:00
|
|
|
"""Content formatter for `LLaMA`."""
|
|
|
|
|
|
|
|
SUPPORTED_ROLES: List[str] = ["user", "assistant", "system"]
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _convert_message_to_dict(message: BaseMessage) -> Dict:
|
|
|
|
"""Converts message to a dict according to role"""
|
|
|
|
content = cast(str, message.content)
|
|
|
|
if isinstance(message, HumanMessage):
|
|
|
|
return {
|
|
|
|
"role": "user",
|
|
|
|
"content": ContentFormatterBase.escape_special_characters(content),
|
|
|
|
}
|
|
|
|
elif isinstance(message, AIMessage):
|
|
|
|
return {
|
|
|
|
"role": "assistant",
|
|
|
|
"content": ContentFormatterBase.escape_special_characters(content),
|
|
|
|
}
|
|
|
|
elif isinstance(message, SystemMessage):
|
|
|
|
return {
|
|
|
|
"role": "system",
|
|
|
|
"content": ContentFormatterBase.escape_special_characters(content),
|
|
|
|
}
|
|
|
|
elif (
|
|
|
|
isinstance(message, ChatMessage)
|
2024-01-24 01:08:51 +00:00
|
|
|
and message.role in LlamaChatContentFormatter.SUPPORTED_ROLES
|
2023-12-11 21:53:30 +00:00
|
|
|
):
|
|
|
|
return {
|
|
|
|
"role": message.role,
|
|
|
|
"content": ContentFormatterBase.escape_special_characters(content),
|
|
|
|
}
|
|
|
|
else:
|
|
|
|
supported = ",".join(
|
2024-01-24 01:08:51 +00:00
|
|
|
[role for role in LlamaChatContentFormatter.SUPPORTED_ROLES]
|
2023-12-11 21:53:30 +00:00
|
|
|
)
|
|
|
|
raise ValueError(
|
|
|
|
f"""Received unsupported role.
|
|
|
|
Supported roles for the LLaMa Foundation Model: {supported}"""
|
|
|
|
)
|
|
|
|
|
2024-01-24 01:08:51 +00:00
|
|
|
@property
|
|
|
|
def supported_api_types(self) -> List[AzureMLEndpointApiType]:
|
|
|
|
return [AzureMLEndpointApiType.realtime, AzureMLEndpointApiType.serverless]
|
|
|
|
|
2024-02-05 21:42:59 +00:00
|
|
|
def format_messages_request_payload(
|
2024-01-24 01:08:51 +00:00
|
|
|
self,
|
|
|
|
messages: List[BaseMessage],
|
|
|
|
model_kwargs: Dict,
|
|
|
|
api_type: AzureMLEndpointApiType,
|
2024-02-05 21:42:59 +00:00
|
|
|
) -> bytes:
|
2024-01-24 01:08:51 +00:00
|
|
|
"""Formats the request according to the chosen api"""
|
2023-12-11 21:53:30 +00:00
|
|
|
chat_messages = [
|
2024-01-24 01:08:51 +00:00
|
|
|
LlamaChatContentFormatter._convert_message_to_dict(message)
|
2023-12-11 21:53:30 +00:00
|
|
|
for message in messages
|
|
|
|
]
|
2024-01-24 01:08:51 +00:00
|
|
|
if api_type == AzureMLEndpointApiType.realtime:
|
|
|
|
request_payload = json.dumps(
|
|
|
|
{
|
|
|
|
"input_data": {
|
|
|
|
"input_string": chat_messages,
|
|
|
|
"parameters": model_kwargs,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
)
|
|
|
|
elif api_type == AzureMLEndpointApiType.serverless:
|
|
|
|
request_payload = json.dumps({"messages": chat_messages, **model_kwargs})
|
|
|
|
else:
|
|
|
|
raise ValueError(
|
|
|
|
f"`api_type` {api_type} is not supported by this formatter"
|
|
|
|
)
|
2024-02-05 21:42:59 +00:00
|
|
|
return str.encode(request_payload)
|
2023-12-11 21:53:30 +00:00
|
|
|
|
2024-02-05 21:42:59 +00:00
|
|
|
def format_response_payload(
|
|
|
|
self,
|
|
|
|
output: bytes,
|
|
|
|
api_type: AzureMLEndpointApiType = AzureMLEndpointApiType.realtime,
|
2024-01-24 01:08:51 +00:00
|
|
|
) -> ChatGeneration:
|
2023-12-11 21:53:30 +00:00
|
|
|
"""Formats response"""
|
2024-01-24 01:08:51 +00:00
|
|
|
if api_type == AzureMLEndpointApiType.realtime:
|
|
|
|
try:
|
|
|
|
choice = json.loads(output)["output"]
|
|
|
|
except (KeyError, IndexError, TypeError) as e:
|
2024-02-05 21:42:59 +00:00
|
|
|
raise ValueError(self.format_error_msg.format(api_type=api_type)) from e
|
2024-01-24 01:08:51 +00:00
|
|
|
return ChatGeneration(
|
|
|
|
message=BaseMessage(
|
|
|
|
content=choice.strip(),
|
|
|
|
type="assistant",
|
|
|
|
),
|
|
|
|
generation_info=None,
|
|
|
|
)
|
|
|
|
if api_type == AzureMLEndpointApiType.serverless:
|
|
|
|
try:
|
|
|
|
choice = json.loads(output)["choices"][0]
|
|
|
|
if not isinstance(choice, dict):
|
|
|
|
raise TypeError(
|
|
|
|
"Endpoint response is not well formed for a chat "
|
|
|
|
"model. Expected `dict` but `{type(choice)}` was received."
|
|
|
|
)
|
|
|
|
except (KeyError, IndexError, TypeError) as e:
|
2024-02-05 21:42:59 +00:00
|
|
|
raise ValueError(self.format_error_msg.format(api_type=api_type)) from e
|
2024-01-24 01:08:51 +00:00
|
|
|
return ChatGeneration(
|
|
|
|
message=BaseMessage(
|
|
|
|
content=choice["message"]["content"].strip(),
|
|
|
|
type=choice["message"]["role"],
|
|
|
|
),
|
|
|
|
generation_info=dict(
|
|
|
|
finish_reason=choice.get("finish_reason"),
|
|
|
|
logprobs=choice.get("logprobs"),
|
|
|
|
),
|
|
|
|
)
|
|
|
|
raise ValueError(f"`api_type` {api_type} is not supported by this formatter")
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
|
2024-01-24 01:08:51 +00:00
|
|
|
class AzureMLChatOnlineEndpoint(BaseChatModel, AzureMLBaseEndpoint):
|
|
|
|
"""Azure ML Online Endpoint chat models.
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
2024-01-24 01:08:51 +00:00
|
|
|
azure_llm = AzureMLOnlineEndpoint(
|
2023-12-11 21:53:30 +00:00
|
|
|
endpoint_url="https://<your-endpoint>.<your_region>.inference.ml.azure.com/score",
|
2024-01-24 01:08:51 +00:00
|
|
|
endpoint_api_type=AzureMLApiType.realtime,
|
2023-12-11 21:53:30 +00:00
|
|
|
endpoint_api_key="my-api-key",
|
2024-01-24 01:08:51 +00:00
|
|
|
content_formatter=chat_content_formatter,
|
2023-12-11 21:53:30 +00:00
|
|
|
)
|
2024-01-24 01:08:51 +00:00
|
|
|
""" # noqa: E501
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
@property
|
|
|
|
def _identifying_params(self) -> Dict[str, Any]:
|
|
|
|
"""Get the identifying parameters."""
|
|
|
|
_model_kwargs = self.model_kwargs or {}
|
|
|
|
return {
|
|
|
|
**{"model_kwargs": _model_kwargs},
|
|
|
|
}
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _llm_type(self) -> str:
|
|
|
|
"""Return type of llm."""
|
|
|
|
return "azureml_chat_endpoint"
|
|
|
|
|
2024-01-24 01:08:51 +00:00
|
|
|
def _generate(
|
2023-12-11 21:53:30 +00:00
|
|
|
self,
|
|
|
|
messages: List[BaseMessage],
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
2024-01-24 01:08:51 +00:00
|
|
|
) -> ChatResult:
|
2023-12-11 21:53:30 +00:00
|
|
|
"""Call out to an AzureML Managed Online endpoint.
|
|
|
|
Args:
|
|
|
|
messages: The messages in the conversation with the chat model.
|
|
|
|
stop: Optional list of stop words to use when generating.
|
|
|
|
Returns:
|
|
|
|
The string generated by the model.
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
response = azureml_model("Tell me a joke.")
|
|
|
|
"""
|
|
|
|
_model_kwargs = self.model_kwargs or {}
|
2024-01-24 01:08:51 +00:00
|
|
|
_model_kwargs.update(kwargs)
|
|
|
|
if stop:
|
|
|
|
_model_kwargs["stop"] = stop
|
2023-12-11 21:53:30 +00:00
|
|
|
|
2024-02-05 21:42:59 +00:00
|
|
|
request_payload = self.content_formatter.format_messages_request_payload(
|
2024-01-24 01:08:51 +00:00
|
|
|
messages, _model_kwargs, self.endpoint_api_type
|
|
|
|
)
|
|
|
|
response_payload = self.http_client.call(
|
|
|
|
body=request_payload, run_manager=run_manager
|
2023-12-11 21:53:30 +00:00
|
|
|
)
|
2024-01-24 01:08:51 +00:00
|
|
|
generations = self.content_formatter.format_response_payload(
|
|
|
|
response_payload, self.endpoint_api_type
|
2023-12-11 21:53:30 +00:00
|
|
|
)
|
2024-01-24 01:08:51 +00:00
|
|
|
return ChatResult(generations=[generations])
|