mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
84 lines
2.8 KiB
Python
84 lines
2.8 KiB
Python
|
"""OpenAPI spec agent."""
|
||
|
from __future__ import annotations
|
||
|
|
||
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional
|
||
|
|
||
|
from langchain_core.callbacks import BaseCallbackManager
|
||
|
from langchain_core.language_models import BaseLanguageModel
|
||
|
|
||
|
from langchain_community.agent_toolkits.openapi.prompt import (
|
||
|
OPENAPI_PREFIX,
|
||
|
OPENAPI_SUFFIX,
|
||
|
)
|
||
|
from langchain_community.agent_toolkits.openapi.toolkit import OpenAPIToolkit
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from langchain.agents.agent import AgentExecutor
|
||
|
|
||
|
|
||
|
def create_openapi_agent(
|
||
|
llm: BaseLanguageModel,
|
||
|
toolkit: OpenAPIToolkit,
|
||
|
callback_manager: Optional[BaseCallbackManager] = None,
|
||
|
prefix: str = OPENAPI_PREFIX,
|
||
|
suffix: str = OPENAPI_SUFFIX,
|
||
|
format_instructions: Optional[str] = None,
|
||
|
input_variables: Optional[List[str]] = None,
|
||
|
max_iterations: Optional[int] = 15,
|
||
|
max_execution_time: Optional[float] = None,
|
||
|
early_stopping_method: str = "force",
|
||
|
verbose: bool = False,
|
||
|
return_intermediate_steps: bool = False,
|
||
|
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> AgentExecutor:
|
||
|
"""Construct an OpenAPI agent from an LLM and tools.
|
||
|
|
||
|
*Security Note*: When creating an OpenAPI agent, check the permissions
|
||
|
and capabilities of the underlying toolkit.
|
||
|
|
||
|
For example, if the default implementation of OpenAPIToolkit
|
||
|
uses the RequestsToolkit which contains tools to make arbitrary
|
||
|
network requests against any URL (e.g., GET, POST, PATCH, PUT, DELETE),
|
||
|
|
||
|
Control access to who can submit issue requests using this toolkit and
|
||
|
what network access it has.
|
||
|
|
||
|
See https://python.langchain.com/docs/security for more information.
|
||
|
"""
|
||
|
from langchain.agents.agent import AgentExecutor
|
||
|
from langchain.agents.mrkl.base import ZeroShotAgent
|
||
|
from langchain.chains.llm import LLMChain
|
||
|
|
||
|
tools = toolkit.get_tools()
|
||
|
prompt_params = (
|
||
|
{"format_instructions": format_instructions}
|
||
|
if format_instructions is not None
|
||
|
else {}
|
||
|
)
|
||
|
prompt = ZeroShotAgent.create_prompt(
|
||
|
tools,
|
||
|
prefix=prefix,
|
||
|
suffix=suffix,
|
||
|
input_variables=input_variables,
|
||
|
**prompt_params,
|
||
|
)
|
||
|
llm_chain = LLMChain(
|
||
|
llm=llm,
|
||
|
prompt=prompt,
|
||
|
callback_manager=callback_manager,
|
||
|
)
|
||
|
tool_names = [tool.name for tool in tools]
|
||
|
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
|
||
|
return AgentExecutor.from_agent_and_tools(
|
||
|
agent=agent,
|
||
|
tools=tools,
|
||
|
callback_manager=callback_manager,
|
||
|
verbose=verbose,
|
||
|
return_intermediate_steps=return_intermediate_steps,
|
||
|
max_iterations=max_iterations,
|
||
|
max_execution_time=max_execution_time,
|
||
|
early_stopping_method=early_stopping_method,
|
||
|
**(agent_executor_kwargs or {}),
|
||
|
)
|