langchain/docs/extras/integrations/chat_loaders/twitter.ipynb

78 lines
2.0 KiB
Plaintext
Raw Normal View History

2023-08-25 04:55:22 +00:00
{
"cells": [
{
"cell_type": "markdown",
"id": "d86853d2",
"metadata": {},
"source": [
"# Twitter (via Apify)\n",
"\n",
"This notebook shows how to load chat messages from Twitter to finetune on. We do this by utilizing Apify. \n",
"\n",
"First, use Apify to export tweets. An example"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "e5034b4e",
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"from langchain.schema import AIMessage\n",
"from langchain.adapters.openai import convert_message_to_dict"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "8bf0fb93",
"metadata": {},
"outputs": [],
"source": [
"with open('example_data/dataset_twitter-scraper_2023-08-23_22-13-19-740.json') as f:\n",
" data = json.load(f)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "468124fa",
"metadata": {},
"outputs": [],
"source": [
"# Filter out tweets that reference other tweets, because it's a bit weird\n",
"tweets = [d[\"full_text\"] for d in data if \"t.co\" not in d['full_text']]\n",
"# Create them as AI messages\n",
"messages = [AIMessage(content=t) for t in tweets]\n",
"# Add in a system message at the start\n",
"# TODO: we could try to extract the subject from the tweets, and put that in the system message.\n",
"system_message = {\"role\": \"system\", \"content\": \"write a tweet\"}\n",
"data = [[system_message, convert_message_to_dict(m)] for m in messages]"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}