langchain/templates/rag-timescale-hybrid-search-time/rag_timescale_hybrid_search_time/chain.py

113 lines
3.3 KiB
Python
Raw Normal View History

# ruff: noqa: E501
import os
from datetime import timedelta
from langchain.chains.query_constructor.base import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_community.chat_models import ChatOpenAI
from langchain_community.embeddings.openai import OpenAIEmbeddings
from langchain_community.llms import OpenAI
from langchain_community.vectorstores.timescalevector import TimescaleVector
docs[patch], templates[patch]: Import from core (#14575) Update imports to use core for the low-hanging fruit changes. Ran following ```bash git grep -l 'langchain.schema.runnable' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.runnable/langchain_core.runnables/g' git grep -l 'langchain.schema.output_parser' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.output_parser/langchain_core.output_parsers/g' git grep -l 'langchain.schema.messages' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.messages/langchain_core.messages/g' git grep -l 'langchain.schema.chat_histry' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.chat_history/langchain_core.chat_history/g' git grep -l 'langchain.schema.prompt_template' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.prompt_template/langchain_core.prompts/g' git grep -l 'from langchain.pydantic_v1' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.pydantic_v1/from langchain_core.pydantic_v1/g' git grep -l 'from langchain.tools.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.tools\.base/from langchain_core.tools/g' git grep -l 'from langchain.chat_models.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.chat_models.base/from langchain_core.language_models.chat_models/g' git grep -l 'from langchain.llms.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.llms\.base\ /from langchain_core.language_models.llms\ /g' git grep -l 'from langchain.embeddings.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.embeddings\.base/from langchain_core.embeddings/g' git grep -l 'from langchain.vectorstores.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.vectorstores\.base/from langchain_core.vectorstores/g' git grep -l 'from langchain.agents.tools' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.agents\.tools/from langchain_core.tools/g' git grep -l 'from langchain.schema.output' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.output\ /from langchain_core.outputs\ /g' git grep -l 'from langchain.schema.embeddings' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.embeddings/from langchain_core.embeddings/g' git grep -l 'from langchain.schema.document' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.document/from langchain_core.documents/g' git grep -l 'from langchain.schema.agent' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.agent/from langchain_core.agents/g' git grep -l 'from langchain.schema.prompt ' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.prompt\ /from langchain_core.prompt_values /g' git grep -l 'from langchain.schema.language_model' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.language_model/from langchain_core.language_models/g' ```
2023-12-12 00:49:10 +00:00
from langchain_core.output_parsers import StrOutputParser
2024-01-03 21:28:05 +00:00
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel
docs[patch], templates[patch]: Import from core (#14575) Update imports to use core for the low-hanging fruit changes. Ran following ```bash git grep -l 'langchain.schema.runnable' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.runnable/langchain_core.runnables/g' git grep -l 'langchain.schema.output_parser' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.output_parser/langchain_core.output_parsers/g' git grep -l 'langchain.schema.messages' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.messages/langchain_core.messages/g' git grep -l 'langchain.schema.chat_histry' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.chat_history/langchain_core.chat_history/g' git grep -l 'langchain.schema.prompt_template' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.prompt_template/langchain_core.prompts/g' git grep -l 'from langchain.pydantic_v1' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.pydantic_v1/from langchain_core.pydantic_v1/g' git grep -l 'from langchain.tools.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.tools\.base/from langchain_core.tools/g' git grep -l 'from langchain.chat_models.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.chat_models.base/from langchain_core.language_models.chat_models/g' git grep -l 'from langchain.llms.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.llms\.base\ /from langchain_core.language_models.llms\ /g' git grep -l 'from langchain.embeddings.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.embeddings\.base/from langchain_core.embeddings/g' git grep -l 'from langchain.vectorstores.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.vectorstores\.base/from langchain_core.vectorstores/g' git grep -l 'from langchain.agents.tools' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.agents\.tools/from langchain_core.tools/g' git grep -l 'from langchain.schema.output' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.output\ /from langchain_core.outputs\ /g' git grep -l 'from langchain.schema.embeddings' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.embeddings/from langchain_core.embeddings/g' git grep -l 'from langchain.schema.document' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.document/from langchain_core.documents/g' git grep -l 'from langchain.schema.agent' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.agent/from langchain_core.agents/g' git grep -l 'from langchain.schema.prompt ' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.prompt\ /from langchain_core.prompt_values /g' git grep -l 'from langchain.schema.language_model' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.language_model/from langchain_core.language_models/g' ```
2023-12-12 00:49:10 +00:00
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
from .load_sample_dataset import load_ts_git_dataset
# to enable debug uncomment the following lines:
# from langchain.globals import set_debug
# set_debug(True)
# from dotenv import find_dotenv, load_dotenv
# _ = load_dotenv(find_dotenv())
if os.environ.get("TIMESCALE_SERVICE_URL", None) is None:
raise Exception("Missing `TIMESCALE_SERVICE_URL` environment variable.")
SERVICE_URL = os.environ["TIMESCALE_SERVICE_URL"]
LOAD_SAMPLE_DATA = os.environ.get("LOAD_SAMPLE_DATA", False)
# DATASET SPECIFIC CODE
# Load the sample dataset. You will have to change this to load your own dataset.
collection_name = "timescale_commits"
partition_interval = timedelta(days=7)
if LOAD_SAMPLE_DATA:
load_ts_git_dataset(
SERVICE_URL,
collection_name=collection_name,
num_records=500,
partition_interval=partition_interval,
)
# This will change depending on the metadata stored in your dataset.
document_content_description = "The git log commit summary containing the commit hash, author, date of commit, change summary and change details"
metadata_field_info = [
AttributeInfo(
name="id",
description="A UUID v1 generated from the date of the commit",
type="uuid",
),
AttributeInfo(
# This is a special attribute represent the timestamp of the uuid.
name="__uuid_timestamp",
description="The timestamp of the commit. Specify in YYYY-MM-DDTHH::MM:SSZ format",
type="datetime.datetime",
),
AttributeInfo(
name="author_name",
description="The name of the author of the commit",
type="string",
),
AttributeInfo(
name="author_email",
description="The email address of the author of the commit",
type="string",
),
]
# END DATASET SPECIFIC CODE
embeddings = OpenAIEmbeddings()
vectorstore = TimescaleVector(
embedding=embeddings,
collection_name=collection_name,
service_url=SERVICE_URL,
time_partition_interval=partition_interval,
)
llm = OpenAI(temperature=0)
retriever = SelfQueryRetriever.from_llm(
llm,
vectorstore,
document_content_description,
metadata_field_info,
enable_limit=True,
verbose=True,
)
template = """Answer the question based only on the following context:
{context}
Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
model = ChatOpenAI(temperature=0, model="gpt-4")
# RAG chain
chain = (
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
| prompt
| model
| StrOutputParser()
)
class Question(BaseModel):
__root__: str
chain = chain.with_types(input_type=Question)