2023-10-29 05:13:22 +00:00
|
|
|
from typing import List, Optional
|
|
|
|
|
|
|
|
from langchain.output_parsers.openai_functions import JsonKeyOutputFunctionsParser
|
|
|
|
from langchain.utils.openai_functions import convert_pydantic_to_openai_function
|
2024-01-03 21:28:05 +00:00
|
|
|
from langchain_core.prompts import ChatPromptTemplate
|
docs[patch], templates[patch]: Import from core (#14575)
Update imports to use core for the low-hanging fruit changes. Ran
following
```bash
git grep -l 'langchain.schema.runnable' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.runnable/langchain_core.runnables/g'
git grep -l 'langchain.schema.output_parser' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.output_parser/langchain_core.output_parsers/g'
git grep -l 'langchain.schema.messages' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.messages/langchain_core.messages/g'
git grep -l 'langchain.schema.chat_histry' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.chat_history/langchain_core.chat_history/g'
git grep -l 'langchain.schema.prompt_template' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.prompt_template/langchain_core.prompts/g'
git grep -l 'from langchain.pydantic_v1' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.pydantic_v1/from langchain_core.pydantic_v1/g'
git grep -l 'from langchain.tools.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.tools\.base/from langchain_core.tools/g'
git grep -l 'from langchain.chat_models.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.chat_models.base/from langchain_core.language_models.chat_models/g'
git grep -l 'from langchain.llms.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.llms\.base\ /from langchain_core.language_models.llms\ /g'
git grep -l 'from langchain.embeddings.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.embeddings\.base/from langchain_core.embeddings/g'
git grep -l 'from langchain.vectorstores.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.vectorstores\.base/from langchain_core.vectorstores/g'
git grep -l 'from langchain.agents.tools' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.agents\.tools/from langchain_core.tools/g'
git grep -l 'from langchain.schema.output' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.output\ /from langchain_core.outputs\ /g'
git grep -l 'from langchain.schema.embeddings' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.embeddings/from langchain_core.embeddings/g'
git grep -l 'from langchain.schema.document' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.document/from langchain_core.documents/g'
git grep -l 'from langchain.schema.agent' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.agent/from langchain_core.agents/g'
git grep -l 'from langchain.schema.prompt ' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.prompt\ /from langchain_core.prompt_values /g'
git grep -l 'from langchain.schema.language_model' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.language_model/from langchain_core.language_models/g'
```
2023-12-12 00:49:10 +00:00
|
|
|
from langchain_core.pydantic_v1 import BaseModel
|
2023-10-29 05:13:22 +00:00
|
|
|
from langchain_experimental.llms.anthropic_functions import AnthropicFunctions
|
|
|
|
|
|
|
|
template = """A article will be passed to you. Extract from it all papers that are mentioned by this article.
|
|
|
|
|
|
|
|
Do not extract the name of the article itself. If no papers are mentioned that's fine - you don't need to extract any! Just return an empty list.
|
|
|
|
|
|
|
|
Do not make up or guess ANY extra information. Only extract what exactly is in the text.""" # noqa: E501
|
|
|
|
|
|
|
|
prompt = ChatPromptTemplate.from_messages([("system", template), ("human", "{input}")])
|
|
|
|
|
|
|
|
|
|
|
|
# Function output schema
|
|
|
|
class Paper(BaseModel):
|
|
|
|
"""Information about papers mentioned."""
|
|
|
|
|
|
|
|
title: str
|
|
|
|
author: Optional[str]
|
|
|
|
|
|
|
|
|
|
|
|
class Info(BaseModel):
|
|
|
|
"""Information to extract"""
|
|
|
|
|
|
|
|
papers: List[Paper]
|
|
|
|
|
|
|
|
|
|
|
|
# Function definition
|
|
|
|
model = AnthropicFunctions()
|
|
|
|
function = [convert_pydantic_to_openai_function(Info)]
|
|
|
|
|
2023-10-29 22:50:09 +00:00
|
|
|
chain = (
|
|
|
|
prompt
|
|
|
|
| model.bind(functions=function, function_call={"name": "Info"})
|
|
|
|
| JsonKeyOutputFunctionsParser(key_name="papers")
|
|
|
|
)
|