2023-12-11 21:53:30 +00:00
|
|
|
from typing import Any, Dict, List, Mapping, Optional
|
|
|
|
|
|
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
|
|
from langchain_core.language_models.llms import LLM
|
|
|
|
from langchain_core.pydantic_v1 import Extra, root_validator
|
|
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
|
|
|
|
|
|
from langchain_community.llms.utils import enforce_stop_tokens
|
|
|
|
|
|
|
|
|
|
|
|
class OctoAIEndpoint(LLM):
|
|
|
|
"""OctoAI LLM Endpoints.
|
|
|
|
|
|
|
|
OctoAIEndpoint is a class to interact with OctoAI
|
|
|
|
Compute Service large language model endpoints.
|
|
|
|
|
|
|
|
To use, you should have the ``octoai`` python package installed, and the
|
|
|
|
environment variable ``OCTOAI_API_TOKEN`` set with your API token, or pass
|
|
|
|
it as a named parameter to the constructor.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
from langchain_community.llms.octoai_endpoint import OctoAIEndpoint
|
|
|
|
OctoAIEndpoint(
|
|
|
|
octoai_api_token="octoai-api-key",
|
2024-01-29 21:57:17 +00:00
|
|
|
endpoint_url="https://text.octoai.run/v1/chat/completions",
|
2023-12-11 21:53:30 +00:00
|
|
|
model_kwargs={
|
2024-01-29 21:57:17 +00:00
|
|
|
"model": "llama-2-13b-chat-fp16",
|
2023-12-11 21:53:30 +00:00
|
|
|
"messages": [
|
|
|
|
{
|
|
|
|
"role": "system",
|
|
|
|
"content": "Below is an instruction that describes a task.
|
|
|
|
Write a response that completes the request."
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"stream": False,
|
2024-01-29 21:57:17 +00:00
|
|
|
"max_tokens": 256,
|
|
|
|
"presence_penalty": 0,
|
|
|
|
"temperature": 0.1,
|
|
|
|
"top_p": 0.9
|
2023-12-11 21:53:30 +00:00
|
|
|
}
|
|
|
|
)
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
endpoint_url: Optional[str] = None
|
|
|
|
"""Endpoint URL to use."""
|
|
|
|
|
|
|
|
model_kwargs: Optional[dict] = None
|
|
|
|
"""Keyword arguments to pass to the model."""
|
|
|
|
|
|
|
|
octoai_api_token: Optional[str] = None
|
|
|
|
"""OCTOAI API Token"""
|
|
|
|
|
|
|
|
streaming: bool = False
|
|
|
|
"""Whether to generate a stream of tokens asynchronously"""
|
|
|
|
|
|
|
|
class Config:
|
|
|
|
"""Configuration for this pydantic object."""
|
|
|
|
|
|
|
|
extra = Extra.forbid
|
|
|
|
|
|
|
|
@root_validator(allow_reuse=True)
|
|
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
|
|
"""Validate that api key and python package exists in environment."""
|
|
|
|
octoai_api_token = get_from_dict_or_env(
|
|
|
|
values, "octoai_api_token", "OCTOAI_API_TOKEN"
|
|
|
|
)
|
|
|
|
values["endpoint_url"] = get_from_dict_or_env(
|
|
|
|
values, "endpoint_url", "ENDPOINT_URL"
|
|
|
|
)
|
|
|
|
|
|
|
|
values["octoai_api_token"] = octoai_api_token
|
|
|
|
return values
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
|
|
"""Get the identifying parameters."""
|
|
|
|
_model_kwargs = self.model_kwargs or {}
|
|
|
|
return {
|
|
|
|
**{"endpoint_url": self.endpoint_url},
|
|
|
|
**{"model_kwargs": _model_kwargs},
|
|
|
|
}
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _llm_type(self) -> str:
|
|
|
|
"""Return type of llm."""
|
|
|
|
return "octoai_endpoint"
|
|
|
|
|
|
|
|
def _call(
|
|
|
|
self,
|
|
|
|
prompt: str,
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> str:
|
|
|
|
"""Call out to OctoAI's inference endpoint.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
prompt: The prompt to pass into the model.
|
|
|
|
stop: Optional list of stop words to use when generating.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
The string generated by the model.
|
|
|
|
|
|
|
|
"""
|
|
|
|
_model_kwargs = self.model_kwargs or {}
|
|
|
|
|
|
|
|
try:
|
|
|
|
from octoai import client
|
|
|
|
|
2024-01-29 21:57:17 +00:00
|
|
|
# Initialize the OctoAI client
|
2023-12-11 21:53:30 +00:00
|
|
|
octoai_client = client.Client(token=self.octoai_api_token)
|
|
|
|
|
|
|
|
if "model" in _model_kwargs:
|
|
|
|
parameter_payload = _model_kwargs
|
2024-01-29 21:57:17 +00:00
|
|
|
|
|
|
|
sys_msg = None
|
|
|
|
if "messages" in parameter_payload:
|
|
|
|
msgs = parameter_payload.get("messages", [])
|
|
|
|
for msg in msgs:
|
|
|
|
if msg.get("role") == "system":
|
|
|
|
sys_msg = msg.get("content")
|
|
|
|
|
|
|
|
# Reset messages list
|
|
|
|
parameter_payload["messages"] = []
|
|
|
|
|
|
|
|
# Append system message if exists
|
|
|
|
if sys_msg:
|
|
|
|
parameter_payload["messages"].append(
|
|
|
|
{"role": "system", "content": sys_msg}
|
|
|
|
)
|
|
|
|
|
|
|
|
# Append user message
|
2023-12-11 21:53:30 +00:00
|
|
|
parameter_payload["messages"].append(
|
|
|
|
{"role": "user", "content": prompt}
|
|
|
|
)
|
2024-01-29 21:57:17 +00:00
|
|
|
|
2023-12-11 21:53:30 +00:00
|
|
|
# Send the request using the OctoAI client
|
2024-01-29 21:57:17 +00:00
|
|
|
try:
|
|
|
|
output = octoai_client.infer(self.endpoint_url, parameter_payload)
|
|
|
|
if output and "choices" in output and len(output["choices"]) > 0:
|
|
|
|
text = output["choices"][0].get("message", {}).get("content")
|
|
|
|
else:
|
|
|
|
text = "Error: Invalid response format or empty choices."
|
|
|
|
except Exception as e:
|
|
|
|
text = f"Error during API call: {str(e)}"
|
|
|
|
|
2023-12-11 21:53:30 +00:00
|
|
|
else:
|
|
|
|
# Prepare the payload JSON
|
|
|
|
parameter_payload = {"inputs": prompt, "parameters": _model_kwargs}
|
|
|
|
|
|
|
|
# Send the request using the OctoAI client
|
|
|
|
resp_json = octoai_client.infer(self.endpoint_url, parameter_payload)
|
|
|
|
text = resp_json["generated_text"]
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
# Handle any errors raised by the inference endpoint
|
|
|
|
raise ValueError(f"Error raised by the inference endpoint: {e}") from e
|
|
|
|
|
|
|
|
if stop is not None:
|
|
|
|
# Apply stop tokens when making calls to OctoAI
|
|
|
|
text = enforce_stop_tokens(text, stop)
|
|
|
|
|
|
|
|
return text
|