mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
260 lines
8.5 KiB
Python
260 lines
8.5 KiB
Python
|
from __future__ import annotations
|
||
|
|
||
|
import logging
|
||
|
from functools import cached_property
|
||
|
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional
|
||
|
|
||
|
from langchain_core.callbacks import (
|
||
|
AsyncCallbackManagerForLLMRun,
|
||
|
CallbackManagerForLLMRun,
|
||
|
)
|
||
|
from langchain_core.language_models.llms import BaseLLM
|
||
|
from langchain_core.load.serializable import Serializable
|
||
|
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
|
||
|
from langchain_core.pydantic_v1 import root_validator
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
class _BaseGigaChat(Serializable):
|
||
|
base_url: Optional[str] = None
|
||
|
""" Base API URL """
|
||
|
auth_url: Optional[str] = None
|
||
|
""" Auth URL """
|
||
|
credentials: Optional[str] = None
|
||
|
""" Auth Token """
|
||
|
scope: Optional[str] = None
|
||
|
""" Permission scope for access token """
|
||
|
|
||
|
access_token: Optional[str] = None
|
||
|
""" Access token for GigaChat """
|
||
|
|
||
|
model: Optional[str] = None
|
||
|
"""Model name to use."""
|
||
|
user: Optional[str] = None
|
||
|
""" Username for authenticate """
|
||
|
password: Optional[str] = None
|
||
|
""" Password for authenticate """
|
||
|
|
||
|
timeout: Optional[float] = None
|
||
|
""" Timeout for request """
|
||
|
verify_ssl_certs: Optional[bool] = None
|
||
|
""" Check certificates for all requests """
|
||
|
|
||
|
ca_bundle_file: Optional[str] = None
|
||
|
cert_file: Optional[str] = None
|
||
|
key_file: Optional[str] = None
|
||
|
key_file_password: Optional[str] = None
|
||
|
# Support for connection to GigaChat through SSL certificates
|
||
|
|
||
|
profanity: bool = True
|
||
|
""" Check for profanity """
|
||
|
streaming: bool = False
|
||
|
""" Whether to stream the results or not. """
|
||
|
temperature: Optional[float] = None
|
||
|
"""What sampling temperature to use."""
|
||
|
max_tokens: Optional[int] = None
|
||
|
""" Maximum number of tokens to generate """
|
||
|
|
||
|
@property
|
||
|
def _llm_type(self) -> str:
|
||
|
return "giga-chat-model"
|
||
|
|
||
|
@property
|
||
|
def lc_secrets(self) -> Dict[str, str]:
|
||
|
return {
|
||
|
"credentials": "GIGACHAT_CREDENTIALS",
|
||
|
"access_token": "GIGACHAT_ACCESS_TOKEN",
|
||
|
"password": "GIGACHAT_PASSWORD",
|
||
|
"key_file_password": "GIGACHAT_KEY_FILE_PASSWORD",
|
||
|
}
|
||
|
|
||
|
@property
|
||
|
def lc_serializable(self) -> bool:
|
||
|
return True
|
||
|
|
||
|
@cached_property
|
||
|
def _client(self) -> Any:
|
||
|
"""Returns GigaChat API client"""
|
||
|
import gigachat
|
||
|
|
||
|
return gigachat.GigaChat(
|
||
|
base_url=self.base_url,
|
||
|
auth_url=self.auth_url,
|
||
|
credentials=self.credentials,
|
||
|
scope=self.scope,
|
||
|
access_token=self.access_token,
|
||
|
model=self.model,
|
||
|
user=self.user,
|
||
|
password=self.password,
|
||
|
timeout=self.timeout,
|
||
|
verify_ssl_certs=self.verify_ssl_certs,
|
||
|
ca_bundle_file=self.ca_bundle_file,
|
||
|
cert_file=self.cert_file,
|
||
|
key_file=self.key_file,
|
||
|
key_file_password=self.key_file_password,
|
||
|
)
|
||
|
|
||
|
@root_validator()
|
||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||
|
"""Validate authenticate data in environment and python package is installed."""
|
||
|
try:
|
||
|
import gigachat # noqa: F401
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Could not import gigachat python package. "
|
||
|
"Please install it with `pip install gigachat`."
|
||
|
)
|
||
|
return values
|
||
|
|
||
|
@property
|
||
|
def _identifying_params(self) -> Dict[str, Any]:
|
||
|
"""Get the identifying parameters."""
|
||
|
return {
|
||
|
"temperature": self.temperature,
|
||
|
"model": self.model,
|
||
|
"profanity": self.profanity,
|
||
|
"streaming": self.streaming,
|
||
|
"max_tokens": self.max_tokens,
|
||
|
}
|
||
|
|
||
|
|
||
|
class GigaChat(_BaseGigaChat, BaseLLM):
|
||
|
"""`GigaChat` large language models API.
|
||
|
|
||
|
To use, you should pass login and password to access GigaChat API or use token.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.llms import GigaChat
|
||
|
giga = GigaChat(credentials=..., verify_ssl_certs=False)
|
||
|
"""
|
||
|
|
||
|
def _build_payload(self, messages: List[str]) -> Dict[str, Any]:
|
||
|
payload: Dict[str, Any] = {
|
||
|
"messages": [{"role": "user", "content": m} for m in messages],
|
||
|
"profanity_check": self.profanity,
|
||
|
}
|
||
|
if self.temperature is not None:
|
||
|
payload["temperature"] = self.temperature
|
||
|
if self.max_tokens is not None:
|
||
|
payload["max_tokens"] = self.max_tokens
|
||
|
if self.model:
|
||
|
payload["model"] = self.model
|
||
|
|
||
|
if self.verbose:
|
||
|
logger.info("Giga request: %s", payload)
|
||
|
|
||
|
return payload
|
||
|
|
||
|
def _create_llm_result(self, response: Any) -> LLMResult:
|
||
|
generations = []
|
||
|
for res in response.choices:
|
||
|
finish_reason = res.finish_reason
|
||
|
gen = Generation(
|
||
|
text=res.message.content,
|
||
|
generation_info={"finish_reason": finish_reason},
|
||
|
)
|
||
|
generations.append([gen])
|
||
|
if finish_reason != "stop":
|
||
|
logger.warning(
|
||
|
"Giga generation stopped with reason: %s",
|
||
|
finish_reason,
|
||
|
)
|
||
|
if self.verbose:
|
||
|
logger.info("Giga response: %s", res.message.content)
|
||
|
token_usage = response.usage
|
||
|
llm_output = {"token_usage": token_usage, "model_name": response.model}
|
||
|
return LLMResult(generations=generations, llm_output=llm_output)
|
||
|
|
||
|
def _generate(
|
||
|
self,
|
||
|
prompts: List[str],
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
|
stream: Optional[bool] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> LLMResult:
|
||
|
should_stream = stream if stream is not None else self.streaming
|
||
|
if should_stream:
|
||
|
generation: Optional[GenerationChunk] = None
|
||
|
stream_iter = self._stream(
|
||
|
prompts[0], stop=stop, run_manager=run_manager, **kwargs
|
||
|
)
|
||
|
for chunk in stream_iter:
|
||
|
if generation is None:
|
||
|
generation = chunk
|
||
|
else:
|
||
|
generation += chunk
|
||
|
assert generation is not None
|
||
|
return LLMResult(generations=[[generation]])
|
||
|
|
||
|
payload = self._build_payload(prompts)
|
||
|
response = self._client.chat(payload)
|
||
|
|
||
|
return self._create_llm_result(response)
|
||
|
|
||
|
async def _agenerate(
|
||
|
self,
|
||
|
prompts: List[str],
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||
|
stream: Optional[bool] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> LLMResult:
|
||
|
should_stream = stream if stream is not None else self.streaming
|
||
|
if should_stream:
|
||
|
generation: Optional[GenerationChunk] = None
|
||
|
stream_iter = self._astream(
|
||
|
prompts[0], stop=stop, run_manager=run_manager, **kwargs
|
||
|
)
|
||
|
async for chunk in stream_iter:
|
||
|
if generation is None:
|
||
|
generation = chunk
|
||
|
else:
|
||
|
generation += chunk
|
||
|
assert generation is not None
|
||
|
return LLMResult(generations=[[generation]])
|
||
|
|
||
|
payload = self._build_payload(prompts)
|
||
|
response = await self._client.achat(payload)
|
||
|
|
||
|
return self._create_llm_result(response)
|
||
|
|
||
|
def _stream(
|
||
|
self,
|
||
|
prompt: str,
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> Iterator[GenerationChunk]:
|
||
|
payload = self._build_payload([prompt])
|
||
|
|
||
|
for chunk in self._client.stream(payload):
|
||
|
if chunk.choices:
|
||
|
content = chunk.choices[0].delta.content
|
||
|
yield GenerationChunk(text=content)
|
||
|
if run_manager:
|
||
|
run_manager.on_llm_new_token(content)
|
||
|
|
||
|
async def _astream(
|
||
|
self,
|
||
|
prompt: str,
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> AsyncIterator[GenerationChunk]:
|
||
|
payload = self._build_payload([prompt])
|
||
|
|
||
|
async for chunk in self._client.astream(payload):
|
||
|
if chunk.choices:
|
||
|
content = chunk.choices[0].delta.content
|
||
|
yield GenerationChunk(text=content)
|
||
|
if run_manager:
|
||
|
await run_manager.on_llm_new_token(content)
|
||
|
|
||
|
def get_num_tokens(self, text: str) -> int:
|
||
|
"""Count approximate number of tokens"""
|
||
|
return round(len(text) / 4.6)
|