mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
74 lines
2.3 KiB
Python
74 lines
2.3 KiB
Python
|
from typing import Any, List, Optional
|
||
|
|
||
|
from langchain_core.embeddings import Embeddings
|
||
|
from langchain_core.pydantic_v1 import BaseModel, Extra
|
||
|
|
||
|
|
||
|
class ModelScopeEmbeddings(BaseModel, Embeddings):
|
||
|
"""ModelScopeHub embedding models.
|
||
|
|
||
|
To use, you should have the ``modelscope`` python package installed.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.embeddings import ModelScopeEmbeddings
|
||
|
model_id = "damo/nlp_corom_sentence-embedding_english-base"
|
||
|
embed = ModelScopeEmbeddings(model_id=model_id, model_revision="v1.0.0")
|
||
|
"""
|
||
|
|
||
|
embed: Any
|
||
|
model_id: str = "damo/nlp_corom_sentence-embedding_english-base"
|
||
|
"""Model name to use."""
|
||
|
model_revision: Optional[str] = None
|
||
|
|
||
|
def __init__(self, **kwargs: Any):
|
||
|
"""Initialize the modelscope"""
|
||
|
super().__init__(**kwargs)
|
||
|
try:
|
||
|
from modelscope.pipelines import pipeline
|
||
|
from modelscope.utils.constant import Tasks
|
||
|
except ImportError as e:
|
||
|
raise ImportError(
|
||
|
"Could not import some python packages."
|
||
|
"Please install it with `pip install modelscope`."
|
||
|
) from e
|
||
|
self.embed = pipeline(
|
||
|
Tasks.sentence_embedding,
|
||
|
model=self.model_id,
|
||
|
model_revision=self.model_revision,
|
||
|
)
|
||
|
|
||
|
class Config:
|
||
|
"""Configuration for this pydantic object."""
|
||
|
|
||
|
extra = Extra.forbid
|
||
|
|
||
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||
|
"""Compute doc embeddings using a modelscope embedding model.
|
||
|
|
||
|
Args:
|
||
|
texts: The list of texts to embed.
|
||
|
|
||
|
Returns:
|
||
|
List of embeddings, one for each text.
|
||
|
"""
|
||
|
texts = list(map(lambda x: x.replace("\n", " "), texts))
|
||
|
inputs = {"source_sentence": texts}
|
||
|
embeddings = self.embed(input=inputs)["text_embedding"]
|
||
|
return embeddings.tolist()
|
||
|
|
||
|
def embed_query(self, text: str) -> List[float]:
|
||
|
"""Compute query embeddings using a modelscope embedding model.
|
||
|
|
||
|
Args:
|
||
|
text: The text to embed.
|
||
|
|
||
|
Returns:
|
||
|
Embeddings for the text.
|
||
|
"""
|
||
|
text = text.replace("\n", " ")
|
||
|
inputs = {"source_sentence": [text]}
|
||
|
embedding = self.embed(input=inputs)["text_embedding"][0]
|
||
|
return embedding.tolist()
|