langchain/docs/extras/integrations/text_embedding/mosaicml.ipynb

112 lines
2.6 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# MosaicML embeddings\n",
"\n",
"[MosaicML](https://docs.mosaicml.com/en/latest/inference.html) offers a managed inference service. You can either use a variety of open source models, or deploy your own.\n",
"\n",
"This example goes over how to use LangChain to interact with MosaicML Inference for text embedding."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# sign up for an account: https://forms.mosaicml.com/demo?utm_source=langchain\n",
"\n",
"from getpass import getpass\n",
"\n",
"MOSAICML_API_TOKEN = getpass()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"MOSAICML_API_TOKEN\"] = MOSAICML_API_TOKEN"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings import MosaicMLInstructorEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"embeddings = MosaicMLInstructorEmbeddings(\n",
" query_instruction=\"Represent the query for retrieval: \"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"query_text = \"This is a test query.\"\n",
"query_result = embeddings.embed_query(query_text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"document_text = \"This is a test document.\"\n",
"document_result = embeddings.embed_documents([document_text])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"query_numpy = np.array(query_result)\n",
"document_numpy = np.array(document_result[0])\n",
"similarity = np.dot(query_numpy, document_numpy) / (\n",
" np.linalg.norm(query_numpy) * np.linalg.norm(document_numpy)\n",
")\n",
"print(f\"Cosine similarity between document and query: {similarity}\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}