langchain/docs/extras/integrations/providers/beam.mdx

92 lines
2.3 KiB
Plaintext
Raw Normal View History

# Beam
This page covers how to use Beam within LangChain.
It is broken into two parts: installation and setup, and then references to specific Beam wrappers.
## Installation and Setup
- [Create an account](https://www.beam.cloud/)
- Install the Beam CLI with `curl https://raw.githubusercontent.com/slai-labs/get-beam/main/get-beam.sh -sSfL | sh`
- Register API keys with `beam configure`
- Set environment variables (`BEAM_CLIENT_ID`) and (`BEAM_CLIENT_SECRET`)
- Install the Beam SDK `pip install beam-sdk`
## Wrappers
### LLM
There exists a Beam LLM wrapper, which you can access with
```python
from langchain.llms.beam import Beam
```
## Define your Beam app.
This is the environment youll be developing against once you start the app.
It's also used to define the maximum response length from the model.
```python
llm = Beam(model_name="gpt2",
name="langchain-gpt2-test",
cpu=8,
memory="32Gi",
gpu="A10G",
python_version="python3.8",
python_packages=[
"diffusers[torch]>=0.10",
"transformers",
"torch",
"pillow",
"accelerate",
"safetensors",
"xformers",],
max_length="50",
verbose=False)
```
## Deploy your Beam app
Once defined, you can deploy your Beam app by calling your model's `_deploy()` method.
```python
llm._deploy()
```
## Call your Beam app
Once a beam model is deployed, it can be called by callying your model's `_call()` method.
This returns the GPT2 text response to your prompt.
```python
response = llm._call("Running machine learning on a remote GPU")
```
An example script which deploys the model and calls it would be:
```python
from langchain.llms.beam import Beam
import time
llm = Beam(model_name="gpt2",
name="langchain-gpt2-test",
cpu=8,
memory="32Gi",
gpu="A10G",
python_version="python3.8",
python_packages=[
"diffusers[torch]>=0.10",
"transformers",
"torch",
"pillow",
"accelerate",
"safetensors",
"xformers",],
max_length="50",
verbose=False)
llm._deploy()
response = llm._call("Running machine learning on a remote GPU")
print(response)
```