2023-12-11 21:53:30 +00:00
|
|
|
"""Wrapper around the Tencent vector database."""
|
|
|
|
from __future__ import annotations
|
|
|
|
|
|
|
|
import json
|
|
|
|
import logging
|
|
|
|
import time
|
|
|
|
from typing import Any, Dict, Iterable, List, Optional, Tuple
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
from langchain_core.documents import Document
|
|
|
|
from langchain_core.embeddings import Embeddings
|
|
|
|
from langchain_core.utils import guard_import
|
|
|
|
from langchain_core.vectorstores import VectorStore
|
|
|
|
|
|
|
|
from langchain_community.vectorstores.utils import maximal_marginal_relevance
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
class ConnectionParams:
|
|
|
|
"""Tencent vector DB Connection params.
|
|
|
|
|
|
|
|
See the following documentation for details:
|
|
|
|
https://cloud.tencent.com/document/product/1709/95820
|
|
|
|
|
|
|
|
Attribute:
|
|
|
|
url (str) : The access address of the vector database server
|
|
|
|
that the client needs to connect to.
|
|
|
|
key (str): API key for client to access the vector database server,
|
|
|
|
which is used for authentication.
|
|
|
|
username (str) : Account for client to access the vector database server.
|
|
|
|
timeout (int) : Request Timeout.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, url: str, key: str, username: str = "root", timeout: int = 10):
|
|
|
|
self.url = url
|
|
|
|
self.key = key
|
|
|
|
self.username = username
|
|
|
|
self.timeout = timeout
|
|
|
|
|
|
|
|
|
|
|
|
class IndexParams:
|
|
|
|
"""Tencent vector DB Index params.
|
|
|
|
|
|
|
|
See the following documentation for details:
|
|
|
|
https://cloud.tencent.com/document/product/1709/95826
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
dimension: int,
|
|
|
|
shard: int = 1,
|
|
|
|
replicas: int = 2,
|
|
|
|
index_type: str = "HNSW",
|
|
|
|
metric_type: str = "L2",
|
|
|
|
params: Optional[Dict] = None,
|
|
|
|
):
|
|
|
|
self.dimension = dimension
|
|
|
|
self.shard = shard
|
|
|
|
self.replicas = replicas
|
|
|
|
self.index_type = index_type
|
|
|
|
self.metric_type = metric_type
|
|
|
|
self.params = params
|
|
|
|
|
|
|
|
|
|
|
|
class TencentVectorDB(VectorStore):
|
2023-12-19 13:58:24 +00:00
|
|
|
"""Tencent VectorDB as a vector store.
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
In order to use this you need to have a database instance.
|
|
|
|
See the following documentation for details:
|
|
|
|
https://cloud.tencent.com/document/product/1709/94951
|
|
|
|
"""
|
|
|
|
|
|
|
|
field_id: str = "id"
|
|
|
|
field_vector: str = "vector"
|
|
|
|
field_text: str = "text"
|
|
|
|
field_metadata: str = "metadata"
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
embedding: Embeddings,
|
|
|
|
connection_params: ConnectionParams,
|
|
|
|
index_params: IndexParams = IndexParams(128),
|
|
|
|
database_name: str = "LangChainDatabase",
|
|
|
|
collection_name: str = "LangChainCollection",
|
|
|
|
drop_old: Optional[bool] = False,
|
|
|
|
):
|
|
|
|
self.document = guard_import("tcvectordb.model.document")
|
|
|
|
tcvectordb = guard_import("tcvectordb")
|
|
|
|
self.embedding_func = embedding
|
|
|
|
self.index_params = index_params
|
|
|
|
self.vdb_client = tcvectordb.VectorDBClient(
|
|
|
|
url=connection_params.url,
|
|
|
|
username=connection_params.username,
|
|
|
|
key=connection_params.key,
|
|
|
|
timeout=connection_params.timeout,
|
|
|
|
)
|
|
|
|
db_list = self.vdb_client.list_databases()
|
|
|
|
db_exist: bool = False
|
|
|
|
for db in db_list:
|
|
|
|
if database_name == db.database_name:
|
|
|
|
db_exist = True
|
|
|
|
break
|
|
|
|
if db_exist:
|
|
|
|
self.database = self.vdb_client.database(database_name)
|
|
|
|
else:
|
|
|
|
self.database = self.vdb_client.create_database(database_name)
|
|
|
|
try:
|
|
|
|
self.collection = self.database.describe_collection(collection_name)
|
|
|
|
if drop_old:
|
|
|
|
self.database.drop_collection(collection_name)
|
|
|
|
self._create_collection(collection_name)
|
|
|
|
except tcvectordb.exceptions.VectorDBException:
|
|
|
|
self._create_collection(collection_name)
|
|
|
|
|
|
|
|
def _create_collection(self, collection_name: str) -> None:
|
|
|
|
enum = guard_import("tcvectordb.model.enum")
|
|
|
|
vdb_index = guard_import("tcvectordb.model.index")
|
|
|
|
index_type = None
|
|
|
|
for k, v in enum.IndexType.__members__.items():
|
|
|
|
if k == self.index_params.index_type:
|
|
|
|
index_type = v
|
|
|
|
if index_type is None:
|
|
|
|
raise ValueError("unsupported index_type")
|
|
|
|
metric_type = None
|
|
|
|
for k, v in enum.MetricType.__members__.items():
|
|
|
|
if k == self.index_params.metric_type:
|
|
|
|
metric_type = v
|
|
|
|
if metric_type is None:
|
|
|
|
raise ValueError("unsupported metric_type")
|
|
|
|
if self.index_params.params is None:
|
|
|
|
params = vdb_index.HNSWParams(m=16, efconstruction=200)
|
|
|
|
else:
|
|
|
|
params = vdb_index.HNSWParams(
|
|
|
|
m=self.index_params.params.get("M", 16),
|
|
|
|
efconstruction=self.index_params.params.get("efConstruction", 200),
|
|
|
|
)
|
|
|
|
index = vdb_index.Index(
|
|
|
|
vdb_index.FilterIndex(
|
|
|
|
self.field_id, enum.FieldType.String, enum.IndexType.PRIMARY_KEY
|
|
|
|
),
|
|
|
|
vdb_index.VectorIndex(
|
|
|
|
self.field_vector,
|
|
|
|
self.index_params.dimension,
|
|
|
|
index_type,
|
|
|
|
metric_type,
|
|
|
|
params,
|
|
|
|
),
|
|
|
|
vdb_index.FilterIndex(
|
|
|
|
self.field_text, enum.FieldType.String, enum.IndexType.FILTER
|
|
|
|
),
|
|
|
|
vdb_index.FilterIndex(
|
|
|
|
self.field_metadata, enum.FieldType.String, enum.IndexType.FILTER
|
|
|
|
),
|
|
|
|
)
|
|
|
|
self.collection = self.database.create_collection(
|
|
|
|
name=collection_name,
|
|
|
|
shard=self.index_params.shard,
|
|
|
|
replicas=self.index_params.replicas,
|
|
|
|
description="Collection for LangChain",
|
|
|
|
index=index,
|
|
|
|
)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def embeddings(self) -> Embeddings:
|
|
|
|
return self.embedding_func
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_texts(
|
|
|
|
cls,
|
|
|
|
texts: List[str],
|
|
|
|
embedding: Embeddings,
|
|
|
|
metadatas: Optional[List[dict]] = None,
|
|
|
|
connection_params: Optional[ConnectionParams] = None,
|
|
|
|
index_params: Optional[IndexParams] = None,
|
|
|
|
database_name: str = "LangChainDatabase",
|
|
|
|
collection_name: str = "LangChainCollection",
|
|
|
|
drop_old: Optional[bool] = False,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> TencentVectorDB:
|
|
|
|
"""Create a collection, indexes it with HNSW, and insert data."""
|
|
|
|
if len(texts) == 0:
|
|
|
|
raise ValueError("texts is empty")
|
|
|
|
if connection_params is None:
|
|
|
|
raise ValueError("connection_params is empty")
|
|
|
|
try:
|
|
|
|
embeddings = embedding.embed_documents(texts[0:1])
|
|
|
|
except NotImplementedError:
|
|
|
|
embeddings = [embedding.embed_query(texts[0])]
|
|
|
|
dimension = len(embeddings[0])
|
|
|
|
if index_params is None:
|
|
|
|
index_params = IndexParams(dimension=dimension)
|
|
|
|
else:
|
|
|
|
index_params.dimension = dimension
|
|
|
|
vector_db = cls(
|
|
|
|
embedding=embedding,
|
|
|
|
connection_params=connection_params,
|
|
|
|
index_params=index_params,
|
|
|
|
database_name=database_name,
|
|
|
|
collection_name=collection_name,
|
|
|
|
drop_old=drop_old,
|
|
|
|
)
|
|
|
|
vector_db.add_texts(texts=texts, metadatas=metadatas)
|
|
|
|
return vector_db
|
|
|
|
|
|
|
|
def add_texts(
|
|
|
|
self,
|
|
|
|
texts: Iterable[str],
|
|
|
|
metadatas: Optional[List[dict]] = None,
|
|
|
|
timeout: Optional[int] = None,
|
|
|
|
batch_size: int = 1000,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> List[str]:
|
|
|
|
"""Insert text data into TencentVectorDB."""
|
|
|
|
texts = list(texts)
|
|
|
|
try:
|
|
|
|
embeddings = self.embedding_func.embed_documents(texts)
|
|
|
|
except NotImplementedError:
|
|
|
|
embeddings = [self.embedding_func.embed_query(x) for x in texts]
|
|
|
|
if len(embeddings) == 0:
|
|
|
|
logger.debug("Nothing to insert, skipping.")
|
|
|
|
return []
|
|
|
|
pks: list[str] = []
|
|
|
|
total_count = len(embeddings)
|
|
|
|
for start in range(0, total_count, batch_size):
|
|
|
|
# Grab end index
|
|
|
|
docs = []
|
|
|
|
end = min(start + batch_size, total_count)
|
|
|
|
for id in range(start, end, 1):
|
|
|
|
metadata = "{}"
|
|
|
|
if metadatas is not None:
|
|
|
|
metadata = json.dumps(metadatas[id])
|
|
|
|
doc = self.document.Document(
|
|
|
|
id="{}-{}-{}".format(time.time_ns(), hash(texts[id]), id),
|
|
|
|
vector=embeddings[id],
|
|
|
|
text=texts[id],
|
|
|
|
metadata=metadata,
|
|
|
|
)
|
|
|
|
docs.append(doc)
|
|
|
|
pks.append(str(id))
|
|
|
|
self.collection.upsert(docs, timeout)
|
|
|
|
return pks
|
|
|
|
|
|
|
|
def similarity_search(
|
|
|
|
self,
|
|
|
|
query: str,
|
|
|
|
k: int = 4,
|
|
|
|
param: Optional[dict] = None,
|
|
|
|
expr: Optional[str] = None,
|
|
|
|
timeout: Optional[int] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> List[Document]:
|
|
|
|
"""Perform a similarity search against the query string."""
|
|
|
|
res = self.similarity_search_with_score(
|
|
|
|
query=query, k=k, param=param, expr=expr, timeout=timeout, **kwargs
|
|
|
|
)
|
|
|
|
return [doc for doc, _ in res]
|
|
|
|
|
|
|
|
def similarity_search_with_score(
|
|
|
|
self,
|
|
|
|
query: str,
|
|
|
|
k: int = 4,
|
|
|
|
param: Optional[dict] = None,
|
|
|
|
expr: Optional[str] = None,
|
|
|
|
timeout: Optional[int] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> List[Tuple[Document, float]]:
|
|
|
|
"""Perform a search on a query string and return results with score."""
|
|
|
|
# Embed the query text.
|
|
|
|
embedding = self.embedding_func.embed_query(query)
|
|
|
|
res = self.similarity_search_with_score_by_vector(
|
|
|
|
embedding=embedding, k=k, param=param, expr=expr, timeout=timeout, **kwargs
|
|
|
|
)
|
|
|
|
return res
|
|
|
|
|
|
|
|
def similarity_search_by_vector(
|
|
|
|
self,
|
|
|
|
embedding: List[float],
|
|
|
|
k: int = 4,
|
|
|
|
param: Optional[dict] = None,
|
|
|
|
expr: Optional[str] = None,
|
|
|
|
timeout: Optional[int] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> List[Document]:
|
|
|
|
"""Perform a similarity search against the query string."""
|
|
|
|
res = self.similarity_search_with_score_by_vector(
|
|
|
|
embedding=embedding, k=k, param=param, expr=expr, timeout=timeout, **kwargs
|
|
|
|
)
|
|
|
|
return [doc for doc, _ in res]
|
|
|
|
|
|
|
|
def similarity_search_with_score_by_vector(
|
|
|
|
self,
|
|
|
|
embedding: List[float],
|
|
|
|
k: int = 4,
|
|
|
|
param: Optional[dict] = None,
|
|
|
|
expr: Optional[str] = None,
|
|
|
|
timeout: Optional[int] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> List[Tuple[Document, float]]:
|
|
|
|
"""Perform a search on a query string and return results with score."""
|
|
|
|
filter = None if expr is None else self.document.Filter(expr)
|
|
|
|
ef = 10 if param is None else param.get("ef", 10)
|
|
|
|
res: List[List[Dict]] = self.collection.search(
|
|
|
|
vectors=[embedding],
|
|
|
|
filter=filter,
|
|
|
|
params=self.document.HNSWSearchParams(ef=ef),
|
|
|
|
retrieve_vector=False,
|
|
|
|
limit=k,
|
|
|
|
timeout=timeout,
|
|
|
|
)
|
|
|
|
# Organize results.
|
|
|
|
ret: List[Tuple[Document, float]] = []
|
|
|
|
if res is None or len(res) == 0:
|
|
|
|
return ret
|
|
|
|
for result in res[0]:
|
|
|
|
meta = result.get(self.field_metadata)
|
|
|
|
if meta is not None:
|
|
|
|
meta = json.loads(meta)
|
2024-02-05 19:22:06 +00:00
|
|
|
doc = Document(page_content=result.get(self.field_text), metadata=meta) # type: ignore[arg-type]
|
2023-12-11 21:53:30 +00:00
|
|
|
pair = (doc, result.get("score", 0.0))
|
|
|
|
ret.append(pair)
|
|
|
|
return ret
|
|
|
|
|
|
|
|
def max_marginal_relevance_search(
|
|
|
|
self,
|
|
|
|
query: str,
|
|
|
|
k: int = 4,
|
|
|
|
fetch_k: int = 20,
|
|
|
|
lambda_mult: float = 0.5,
|
|
|
|
param: Optional[dict] = None,
|
|
|
|
expr: Optional[str] = None,
|
|
|
|
timeout: Optional[int] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> List[Document]:
|
|
|
|
"""Perform a search and return results that are reordered by MMR."""
|
|
|
|
embedding = self.embedding_func.embed_query(query)
|
|
|
|
return self.max_marginal_relevance_search_by_vector(
|
|
|
|
embedding=embedding,
|
|
|
|
k=k,
|
|
|
|
fetch_k=fetch_k,
|
|
|
|
lambda_mult=lambda_mult,
|
|
|
|
param=param,
|
|
|
|
expr=expr,
|
|
|
|
timeout=timeout,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
|
|
|
def max_marginal_relevance_search_by_vector(
|
|
|
|
self,
|
|
|
|
embedding: list[float],
|
|
|
|
k: int = 4,
|
|
|
|
fetch_k: int = 20,
|
|
|
|
lambda_mult: float = 0.5,
|
|
|
|
param: Optional[dict] = None,
|
|
|
|
expr: Optional[str] = None,
|
|
|
|
timeout: Optional[int] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> List[Document]:
|
|
|
|
"""Perform a search and return results that are reordered by MMR."""
|
|
|
|
filter = None if expr is None else self.document.Filter(expr)
|
|
|
|
ef = 10 if param is None else param.get("ef", 10)
|
|
|
|
res: List[List[Dict]] = self.collection.search(
|
|
|
|
vectors=[embedding],
|
|
|
|
filter=filter,
|
|
|
|
params=self.document.HNSWSearchParams(ef=ef),
|
|
|
|
retrieve_vector=True,
|
|
|
|
limit=fetch_k,
|
|
|
|
timeout=timeout,
|
|
|
|
)
|
|
|
|
# Organize results.
|
|
|
|
documents = []
|
|
|
|
ordered_result_embeddings = []
|
|
|
|
for result in res[0]:
|
|
|
|
meta = result.get(self.field_metadata)
|
|
|
|
if meta is not None:
|
|
|
|
meta = json.loads(meta)
|
2024-02-05 19:22:06 +00:00
|
|
|
doc = Document(page_content=result.get(self.field_text), metadata=meta) # type: ignore[arg-type]
|
2023-12-11 21:53:30 +00:00
|
|
|
documents.append(doc)
|
|
|
|
ordered_result_embeddings.append(result.get(self.field_vector))
|
|
|
|
# Get the new order of results.
|
|
|
|
new_ordering = maximal_marginal_relevance(
|
|
|
|
np.array(embedding), ordered_result_embeddings, k=k, lambda_mult=lambda_mult
|
|
|
|
)
|
|
|
|
# Reorder the values and return.
|
|
|
|
ret = []
|
|
|
|
for x in new_ordering:
|
|
|
|
# Function can return -1 index
|
|
|
|
if x == -1:
|
|
|
|
break
|
|
|
|
else:
|
|
|
|
ret.append(documents[x])
|
|
|
|
return ret
|