mirror of
https://github.com/hwchase17/langchain
synced 2024-11-02 09:40:22 +00:00
618 lines
22 KiB
Python
618 lines
22 KiB
Python
|
from __future__ import annotations
|
||
|
|
||
|
import uuid
|
||
|
from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Tuple, Type
|
||
|
|
||
|
from langchain_core.documents import Document
|
||
|
from langchain_core.embeddings import Embeddings
|
||
|
from langchain_core.vectorstores import VectorStore
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from couchbase.cluster import Cluster
|
||
|
|
||
|
|
||
|
class CouchbaseVectorStore(VectorStore):
|
||
|
"""`Couchbase Vector Store` vector store.
|
||
|
|
||
|
To use it, you need
|
||
|
- a recent installation of the `couchbase` library
|
||
|
- a Couchbase database with a pre-defined Search index with support for
|
||
|
vector fields
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.vectorstores import CouchbaseVectorStore
|
||
|
from langchain_openai import OpenAIEmbeddings
|
||
|
|
||
|
from couchbase.cluster import Cluster
|
||
|
from couchbase.auth import PasswordAuthenticator
|
||
|
from couchbase.options import ClusterOptions
|
||
|
from datetime import timedelta
|
||
|
|
||
|
auth = PasswordAuthenticator(username, password)
|
||
|
options = ClusterOptions(auth)
|
||
|
connect_string = "couchbases://localhost"
|
||
|
cluster = Cluster(connect_string, options)
|
||
|
|
||
|
# Wait until the cluster is ready for use.
|
||
|
cluster.wait_until_ready(timedelta(seconds=5))
|
||
|
|
||
|
embeddings = OpenAIEmbeddings()
|
||
|
|
||
|
vectorstore = CouchbaseVectorStore(
|
||
|
cluster=cluster,
|
||
|
bucket_name="",
|
||
|
scope_name="",
|
||
|
collection_name="",
|
||
|
embedding=embeddings,
|
||
|
index_name="vector-index",
|
||
|
)
|
||
|
|
||
|
vectorstore.add_texts(["hello", "world"])
|
||
|
results = vectorstore.similarity_search("ola", k=1)
|
||
|
"""
|
||
|
|
||
|
# Default batch size
|
||
|
DEFAULT_BATCH_SIZE = 100
|
||
|
_metadata_key = "metadata"
|
||
|
_default_text_key = "text"
|
||
|
_default_embedding_key = "embedding"
|
||
|
|
||
|
def _check_bucket_exists(self) -> bool:
|
||
|
"""Check if the bucket exists in the linked Couchbase cluster"""
|
||
|
bucket_manager = self._cluster.buckets()
|
||
|
try:
|
||
|
bucket_manager.get_bucket(self._bucket_name)
|
||
|
return True
|
||
|
except Exception:
|
||
|
return False
|
||
|
|
||
|
def _check_scope_and_collection_exists(self) -> bool:
|
||
|
"""Check if the scope and collection exists in the linked Couchbase bucket
|
||
|
Raises a ValueError if either is not found"""
|
||
|
scope_collection_map: Dict[str, Any] = {}
|
||
|
|
||
|
# Get a list of all scopes in the bucket
|
||
|
for scope in self._bucket.collections().get_all_scopes():
|
||
|
scope_collection_map[scope.name] = []
|
||
|
|
||
|
# Get a list of all the collections in the scope
|
||
|
for collection in scope.collections:
|
||
|
scope_collection_map[scope.name].append(collection.name)
|
||
|
|
||
|
# Check if the scope exists
|
||
|
if self._scope_name not in scope_collection_map.keys():
|
||
|
raise ValueError(
|
||
|
f"Scope {self._scope_name} not found in Couchbase "
|
||
|
f"bucket {self._bucket_name}"
|
||
|
)
|
||
|
|
||
|
# Check if the collection exists in the scope
|
||
|
if self._collection_name not in scope_collection_map[self._scope_name]:
|
||
|
raise ValueError(
|
||
|
f"Collection {self._collection_name} not found in scope "
|
||
|
f"{self._scope_name} in Couchbase bucket {self._bucket_name}"
|
||
|
)
|
||
|
|
||
|
return True
|
||
|
|
||
|
def _check_index_exists(self) -> bool:
|
||
|
"""Check if the Search index exists in the linked Couchbase cluster
|
||
|
Raises a ValueError if the index does not exist"""
|
||
|
if self._scoped_index:
|
||
|
all_indexes = [
|
||
|
index.name for index in self._scope.search_indexes().get_all_indexes()
|
||
|
]
|
||
|
if self._index_name not in all_indexes:
|
||
|
raise ValueError(
|
||
|
f"Index {self._index_name} does not exist. "
|
||
|
" Please create the index before searching."
|
||
|
)
|
||
|
else:
|
||
|
all_indexes = [
|
||
|
index.name for index in self._cluster.search_indexes().get_all_indexes()
|
||
|
]
|
||
|
if self._index_name not in all_indexes:
|
||
|
raise ValueError(
|
||
|
f"Index {self._index_name} does not exist. "
|
||
|
" Please create the index before searching."
|
||
|
)
|
||
|
|
||
|
return True
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
cluster: Cluster,
|
||
|
bucket_name: str,
|
||
|
scope_name: str,
|
||
|
collection_name: str,
|
||
|
embedding: Embeddings,
|
||
|
index_name: str,
|
||
|
*,
|
||
|
text_key: Optional[str] = _default_text_key,
|
||
|
embedding_key: Optional[str] = _default_embedding_key,
|
||
|
scoped_index: bool = True,
|
||
|
) -> None:
|
||
|
"""
|
||
|
Initialize the Couchbase Vector Store.
|
||
|
|
||
|
Args:
|
||
|
|
||
|
cluster (Cluster): couchbase cluster object with active connection.
|
||
|
bucket_name (str): name of bucket to store documents in.
|
||
|
scope_name (str): name of scope in the bucket to store documents in.
|
||
|
collection_name (str): name of collection in the scope to store documents in
|
||
|
embedding (Embeddings): embedding function to use.
|
||
|
index_name (str): name of the Search index to use.
|
||
|
text_key (optional[str]): key in document to use as text.
|
||
|
Set to text by default.
|
||
|
embedding_key (optional[str]): key in document to use for the embeddings.
|
||
|
Set to embedding by default.
|
||
|
scoped_index (optional[bool]): specify whether the index is a scoped index.
|
||
|
Set to True by default.
|
||
|
"""
|
||
|
try:
|
||
|
from couchbase.cluster import Cluster
|
||
|
except ImportError as e:
|
||
|
raise ImportError(
|
||
|
"Could not import couchbase python package. "
|
||
|
"Please install couchbase SDK with `pip install couchbase`."
|
||
|
) from e
|
||
|
|
||
|
if not isinstance(cluster, Cluster):
|
||
|
raise ValueError(
|
||
|
f"cluster should be an instance of couchbase.Cluster, "
|
||
|
f"got {type(cluster)}"
|
||
|
)
|
||
|
|
||
|
self._cluster = cluster
|
||
|
|
||
|
if not embedding:
|
||
|
raise ValueError("Embeddings instance must be provided.")
|
||
|
|
||
|
if not bucket_name:
|
||
|
raise ValueError("bucket_name must be provided.")
|
||
|
|
||
|
if not scope_name:
|
||
|
raise ValueError("scope_name must be provided.")
|
||
|
|
||
|
if not collection_name:
|
||
|
raise ValueError("collection_name must be provided.")
|
||
|
|
||
|
if not index_name:
|
||
|
raise ValueError("index_name must be provided.")
|
||
|
|
||
|
self._bucket_name = bucket_name
|
||
|
self._scope_name = scope_name
|
||
|
self._collection_name = collection_name
|
||
|
self._embedding_function = embedding
|
||
|
self._text_key = text_key
|
||
|
self._embedding_key = embedding_key
|
||
|
self._index_name = index_name
|
||
|
self._scoped_index = scoped_index
|
||
|
|
||
|
# Check if the bucket exists
|
||
|
if not self._check_bucket_exists():
|
||
|
raise ValueError(
|
||
|
f"Bucket {self._bucket_name} does not exist. "
|
||
|
" Please create the bucket before searching."
|
||
|
)
|
||
|
|
||
|
try:
|
||
|
self._bucket = self._cluster.bucket(self._bucket_name)
|
||
|
self._scope = self._bucket.scope(self._scope_name)
|
||
|
self._collection = self._scope.collection(self._collection_name)
|
||
|
except Exception as e:
|
||
|
raise ValueError(
|
||
|
"Error connecting to couchbase. "
|
||
|
"Please check the connection and credentials."
|
||
|
) from e
|
||
|
|
||
|
# Check if the scope and collection exists. Throws ValueError if they don't
|
||
|
try:
|
||
|
self._check_scope_and_collection_exists()
|
||
|
except Exception as e:
|
||
|
raise e
|
||
|
|
||
|
# Check if the index exists. Throws ValueError if it doesn't
|
||
|
try:
|
||
|
self._check_index_exists()
|
||
|
except Exception as e:
|
||
|
raise e
|
||
|
|
||
|
def add_texts(
|
||
|
self,
|
||
|
texts: Iterable[str],
|
||
|
metadatas: Optional[List[Dict[str, Any]]] = None,
|
||
|
ids: Optional[List[str]] = None,
|
||
|
batch_size: Optional[int] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> List[str]:
|
||
|
"""Run texts through the embeddings and persist in vectorstore.
|
||
|
|
||
|
If the document IDs are passed, the existing documents (if any) will be
|
||
|
overwritten with the new ones.
|
||
|
|
||
|
Args:
|
||
|
texts (Iterable[str]): Iterable of strings to add to the vectorstore.
|
||
|
metadatas (Optional[List[Dict]]): Optional list of metadatas associated
|
||
|
with the texts.
|
||
|
ids (Optional[List[str]]): Optional list of ids associated with the texts.
|
||
|
IDs have to be unique strings across the collection.
|
||
|
If it is not specified uuids are generated and used as ids.
|
||
|
batch_size (Optional[int]): Optional batch size for bulk insertions.
|
||
|
Default is 100.
|
||
|
|
||
|
Returns:
|
||
|
List[str]:List of ids from adding the texts into the vectorstore.
|
||
|
"""
|
||
|
from couchbase.exceptions import DocumentExistsException
|
||
|
|
||
|
if not batch_size:
|
||
|
batch_size = self.DEFAULT_BATCH_SIZE
|
||
|
doc_ids: List[str] = []
|
||
|
|
||
|
if ids is None:
|
||
|
ids = [uuid.uuid4().hex for _ in texts]
|
||
|
|
||
|
if metadatas is None:
|
||
|
metadatas = [{} for _ in texts]
|
||
|
|
||
|
embedded_texts = self._embedding_function.embed_documents(list(texts))
|
||
|
|
||
|
documents_to_insert = [
|
||
|
{
|
||
|
id: {
|
||
|
self._text_key: text,
|
||
|
self._embedding_key: vector,
|
||
|
self._metadata_key: metadata,
|
||
|
}
|
||
|
for id, text, vector, metadata in zip(
|
||
|
ids, texts, embedded_texts, metadatas
|
||
|
)
|
||
|
}
|
||
|
]
|
||
|
|
||
|
# Insert in batches
|
||
|
for i in range(0, len(documents_to_insert), batch_size):
|
||
|
batch = documents_to_insert[i : i + batch_size]
|
||
|
try:
|
||
|
result = self._collection.upsert_multi(batch[0])
|
||
|
if result.all_ok:
|
||
|
doc_ids.extend(batch[0].keys())
|
||
|
except DocumentExistsException as e:
|
||
|
raise ValueError(f"Document already exists: {e}")
|
||
|
|
||
|
return doc_ids
|
||
|
|
||
|
def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> Optional[bool]:
|
||
|
"""Delete documents from the vector store by ids.
|
||
|
|
||
|
Args:
|
||
|
ids (List[str]): List of IDs of the documents to delete.
|
||
|
batch_size (Optional[int]): Optional batch size for bulk deletions.
|
||
|
|
||
|
Returns:
|
||
|
bool: True if all the documents were deleted successfully, False otherwise.
|
||
|
|
||
|
"""
|
||
|
from couchbase.exceptions import DocumentNotFoundException
|
||
|
|
||
|
if ids is None:
|
||
|
raise ValueError("No document ids provided to delete.")
|
||
|
|
||
|
batch_size = kwargs.get("batch_size", self.DEFAULT_BATCH_SIZE)
|
||
|
deletion_status = True
|
||
|
|
||
|
# Delete in batches
|
||
|
for i in range(0, len(ids), batch_size):
|
||
|
batch = ids[i : i + batch_size]
|
||
|
try:
|
||
|
result = self._collection.remove_multi(batch)
|
||
|
except DocumentNotFoundException as e:
|
||
|
deletion_status = False
|
||
|
raise ValueError(f"Document not found: {e}")
|
||
|
|
||
|
deletion_status &= result.all_ok
|
||
|
|
||
|
return deletion_status
|
||
|
|
||
|
@property
|
||
|
def embeddings(self) -> Embeddings:
|
||
|
"""Return the query embedding object."""
|
||
|
return self._embedding_function
|
||
|
|
||
|
def _format_metadata(self, row_fields: Dict[str, Any]) -> Dict[str, Any]:
|
||
|
"""Helper method to format the metadata from the Couchbase Search API.
|
||
|
Args:
|
||
|
row_fields (Dict[str, Any]): The fields to format.
|
||
|
|
||
|
Returns:
|
||
|
Dict[str, Any]: The formatted metadata.
|
||
|
"""
|
||
|
metadata = {}
|
||
|
for key, value in row_fields.items():
|
||
|
# Couchbase Search returns the metadata key with a prefix
|
||
|
# `metadata.` We remove it to get the original metadata key
|
||
|
if key.startswith(self._metadata_key):
|
||
|
new_key = key.split(self._metadata_key + ".")[-1]
|
||
|
metadata[new_key] = value
|
||
|
else:
|
||
|
metadata[key] = value
|
||
|
|
||
|
return metadata
|
||
|
|
||
|
def similarity_search_with_score_by_vector(
|
||
|
self,
|
||
|
embedding: List[float],
|
||
|
k: int = 4,
|
||
|
search_options: Optional[Dict[str, Any]] = {},
|
||
|
**kwargs: Any,
|
||
|
) -> List[Tuple[Document, float]]:
|
||
|
"""Return docs most similar to embedding vector with their scores.
|
||
|
|
||
|
Args:
|
||
|
embedding (List[float]): Embedding vector to look up documents similar to.
|
||
|
k (int): Number of Documents to return.
|
||
|
Defaults to 4.
|
||
|
search_options (Optional[Dict[str, Any]]): Optional search options that are
|
||
|
passed to Couchbase search.
|
||
|
Defaults to empty dictionary.
|
||
|
fields (Optional[List[str]]): Optional list of fields to include in the
|
||
|
metadata of results. Note that these need to be stored in the index.
|
||
|
If nothing is specified, defaults to all the fields stored in the index.
|
||
|
|
||
|
Returns:
|
||
|
List of (Document, score) that are the most similar to the query vector.
|
||
|
"""
|
||
|
import couchbase.search as search
|
||
|
from couchbase.options import SearchOptions
|
||
|
from couchbase.vector_search import VectorQuery, VectorSearch
|
||
|
|
||
|
fields = kwargs.get("fields", ["*"])
|
||
|
|
||
|
# Document text field needs to be returned from the search
|
||
|
if fields != ["*"] and self._text_key not in fields:
|
||
|
fields.append(self._text_key)
|
||
|
|
||
|
search_req = search.SearchRequest.create(
|
||
|
VectorSearch.from_vector_query(
|
||
|
VectorQuery(
|
||
|
self._embedding_key,
|
||
|
embedding,
|
||
|
k,
|
||
|
)
|
||
|
)
|
||
|
)
|
||
|
try:
|
||
|
if self._scoped_index:
|
||
|
search_iter = self._scope.search(
|
||
|
self._index_name,
|
||
|
search_req,
|
||
|
SearchOptions(
|
||
|
limit=k,
|
||
|
fields=fields,
|
||
|
raw=search_options,
|
||
|
),
|
||
|
)
|
||
|
|
||
|
else:
|
||
|
search_iter = self._cluster.search(
|
||
|
index=self._index_name,
|
||
|
request=search_req,
|
||
|
options=SearchOptions(limit=k, fields=fields, raw=search_options),
|
||
|
)
|
||
|
|
||
|
docs_with_score = []
|
||
|
|
||
|
# Parse the results
|
||
|
for row in search_iter.rows():
|
||
|
text = row.fields.pop(self._text_key, "")
|
||
|
|
||
|
# Format the metadata from Couchbase
|
||
|
metadata = self._format_metadata(row.fields)
|
||
|
|
||
|
score = row.score
|
||
|
doc = Document(page_content=text, metadata=metadata)
|
||
|
docs_with_score.append((doc, score))
|
||
|
|
||
|
except Exception as e:
|
||
|
raise ValueError(f"Search failed with error: {e}")
|
||
|
|
||
|
return docs_with_score
|
||
|
|
||
|
def similarity_search(
|
||
|
self,
|
||
|
query: str,
|
||
|
k: int = 4,
|
||
|
search_options: Optional[Dict[str, Any]] = {},
|
||
|
**kwargs: Any,
|
||
|
) -> List[Document]:
|
||
|
"""Return documents most similar to embedding vector with their scores.
|
||
|
|
||
|
Args:
|
||
|
query (str): Query to look up for similar documents
|
||
|
k (int): Number of Documents to return.
|
||
|
Defaults to 4.
|
||
|
search_options (Optional[Dict[str, Any]]): Optional search options that are
|
||
|
passed to Couchbase search.
|
||
|
Defaults to empty dictionary
|
||
|
fields (Optional[List[str]]): Optional list of fields to include in the
|
||
|
metadata of results. Note that these need to be stored in the index.
|
||
|
If nothing is specified, defaults to all the fields stored in the index.
|
||
|
|
||
|
Returns:
|
||
|
List of Documents most similar to the query.
|
||
|
"""
|
||
|
query_embedding = self.embeddings.embed_query(query)
|
||
|
docs_with_scores = self.similarity_search_with_score_by_vector(
|
||
|
query_embedding, k, search_options, **kwargs
|
||
|
)
|
||
|
return [doc for doc, _ in docs_with_scores]
|
||
|
|
||
|
def similarity_search_with_score(
|
||
|
self,
|
||
|
query: str,
|
||
|
k: int = 4,
|
||
|
search_options: Optional[Dict[str, Any]] = {},
|
||
|
**kwargs: Any,
|
||
|
) -> List[Tuple[Document, float]]:
|
||
|
"""Return documents that are most similar to the query with their scores.
|
||
|
|
||
|
Args:
|
||
|
query (str): Query to look up for similar documents
|
||
|
k (int): Number of Documents to return.
|
||
|
Defaults to 4.
|
||
|
search_options (Optional[Dict[str, Any]]): Optional search options that are
|
||
|
passed to Couchbase search.
|
||
|
Defaults to empty dictionary.
|
||
|
fields (Optional[List[str]]): Optional list of fields to include in the
|
||
|
metadata of results. Note that these need to be stored in the index.
|
||
|
If nothing is specified, defaults to text and metadata fields.
|
||
|
|
||
|
Returns:
|
||
|
List of (Document, score) that are most similar to the query.
|
||
|
"""
|
||
|
query_embedding = self.embeddings.embed_query(query)
|
||
|
docs_with_score = self.similarity_search_with_score_by_vector(
|
||
|
query_embedding, k, search_options, **kwargs
|
||
|
)
|
||
|
return docs_with_score
|
||
|
|
||
|
def similarity_search_by_vector(
|
||
|
self,
|
||
|
embedding: List[float],
|
||
|
k: int = 4,
|
||
|
search_options: Optional[Dict[str, Any]] = {},
|
||
|
**kwargs: Any,
|
||
|
) -> List[Document]:
|
||
|
"""Return documents that are most similar to the vector embedding.
|
||
|
|
||
|
Args:
|
||
|
embedding (List[float]): Embedding to look up documents similar to.
|
||
|
k (int): Number of Documents to return.
|
||
|
Defaults to 4.
|
||
|
search_options (Optional[Dict[str, Any]]): Optional search options that are
|
||
|
passed to Couchbase search.
|
||
|
Defaults to empty dictionary.
|
||
|
fields (Optional[List[str]]): Optional list of fields to include in the
|
||
|
metadata of results. Note that these need to be stored in the index.
|
||
|
If nothing is specified, defaults to document text and metadata fields.
|
||
|
|
||
|
Returns:
|
||
|
List of Documents most similar to the query.
|
||
|
"""
|
||
|
docs_with_score = self.similarity_search_with_score_by_vector(
|
||
|
embedding, k, search_options, **kwargs
|
||
|
)
|
||
|
return [doc for doc, _ in docs_with_score]
|
||
|
|
||
|
@classmethod
|
||
|
def _from_kwargs(
|
||
|
cls: Type[CouchbaseVectorStore],
|
||
|
embedding: Embeddings,
|
||
|
**kwargs: Any,
|
||
|
) -> CouchbaseVectorStore:
|
||
|
"""Initialize the Couchbase vector store from keyword arguments for the
|
||
|
vector store.
|
||
|
|
||
|
Args:
|
||
|
embedding: Embedding object to use to embed text.
|
||
|
**kwargs: Keyword arguments to initialize the vector store with.
|
||
|
Accepted arguments are:
|
||
|
- cluster
|
||
|
- bucket_name
|
||
|
- scope_name
|
||
|
- collection_name
|
||
|
- index_name
|
||
|
- text_key
|
||
|
- embedding_key
|
||
|
- scoped_index
|
||
|
|
||
|
"""
|
||
|
cluster = kwargs.get("cluster", None)
|
||
|
bucket_name = kwargs.get("bucket_name", None)
|
||
|
scope_name = kwargs.get("scope_name", None)
|
||
|
collection_name = kwargs.get("collection_name", None)
|
||
|
index_name = kwargs.get("index_name", None)
|
||
|
text_key = kwargs.get("text_key", cls._default_text_key)
|
||
|
embedding_key = kwargs.get("embedding_key", cls._default_embedding_key)
|
||
|
scoped_index = kwargs.get("scoped_index", True)
|
||
|
|
||
|
return cls(
|
||
|
embedding=embedding,
|
||
|
cluster=cluster,
|
||
|
bucket_name=bucket_name,
|
||
|
scope_name=scope_name,
|
||
|
collection_name=collection_name,
|
||
|
index_name=index_name,
|
||
|
text_key=text_key,
|
||
|
embedding_key=embedding_key,
|
||
|
scoped_index=scoped_index,
|
||
|
)
|
||
|
|
||
|
@classmethod
|
||
|
def from_texts(
|
||
|
cls: Type[CouchbaseVectorStore],
|
||
|
texts: List[str],
|
||
|
embedding: Embeddings,
|
||
|
metadatas: Optional[List[Dict[Any, Any]]] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> CouchbaseVectorStore:
|
||
|
"""Construct a Couchbase vector store from a list of texts.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.vectorstores import CouchbaseVectorStore
|
||
|
from langchain_openai import OpenAIEmbeddings
|
||
|
|
||
|
from couchbase.cluster import Cluster
|
||
|
from couchbase.auth import PasswordAuthenticator
|
||
|
from couchbase.options import ClusterOptions
|
||
|
from datetime import timedelta
|
||
|
|
||
|
auth = PasswordAuthenticator(username, password)
|
||
|
options = ClusterOptions(auth)
|
||
|
connect_string = "couchbases://localhost"
|
||
|
cluster = Cluster(connect_string, options)
|
||
|
|
||
|
# Wait until the cluster is ready for use.
|
||
|
cluster.wait_until_ready(timedelta(seconds=5))
|
||
|
|
||
|
embeddings = OpenAIEmbeddings()
|
||
|
|
||
|
texts = ["hello", "world"]
|
||
|
|
||
|
vectorstore = CouchbaseVectorStore.from_texts(
|
||
|
texts,
|
||
|
embedding=embeddings,
|
||
|
cluster=cluster,
|
||
|
bucket_name="",
|
||
|
scope_name="",
|
||
|
collection_name="",
|
||
|
index_name="vector-index",
|
||
|
)
|
||
|
|
||
|
Args:
|
||
|
texts (List[str]): list of texts to add to the vector store.
|
||
|
embedding (Embeddings): embedding function to use.
|
||
|
metadatas (optional[List[Dict]): list of metadatas to add to documents.
|
||
|
**kwargs: Keyword arguments used to initialize the vector store with and/or
|
||
|
passed to `add_texts` method. Check the constructor and/or `add_texts`
|
||
|
for the list of accepted arguments.
|
||
|
|
||
|
Returns:
|
||
|
A Couchbase vector store.
|
||
|
|
||
|
"""
|
||
|
vector_store = cls._from_kwargs(embedding, **kwargs)
|
||
|
batch_size = kwargs.get("batch_size", vector_store.DEFAULT_BATCH_SIZE)
|
||
|
ids = kwargs.get("ids", None)
|
||
|
vector_store.add_texts(
|
||
|
texts, metadatas=metadatas, ids=ids, batch_size=batch_size
|
||
|
)
|
||
|
|
||
|
return vector_store
|