mirror of
https://github.com/hwchase17/langchain
synced 2024-11-02 09:40:22 +00:00
327 lines
12 KiB
Python
327 lines
12 KiB
Python
|
from __future__ import annotations
|
||
|
|
||
|
import logging
|
||
|
import uuid
|
||
|
from typing import Any, Iterable, List, Optional, Type
|
||
|
|
||
|
import numpy as np
|
||
|
from langchain_core.documents import Document
|
||
|
from langchain_core.embeddings import Embeddings
|
||
|
from langchain_core.vectorstores import VectorStore
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
class AtlasDB(VectorStore):
|
||
|
"""`Atlas` vector store.
|
||
|
|
||
|
Atlas is the `Nomic's` neural database and `rhizomatic` instrument.
|
||
|
|
||
|
To use, you should have the ``nomic`` python package installed.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.vectorstores import AtlasDB
|
||
|
from langchain_community.embeddings.openai import OpenAIEmbeddings
|
||
|
|
||
|
embeddings = OpenAIEmbeddings()
|
||
|
vectorstore = AtlasDB("my_project", embeddings.embed_query)
|
||
|
"""
|
||
|
|
||
|
_ATLAS_DEFAULT_ID_FIELD = "atlas_id"
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
name: str,
|
||
|
embedding_function: Optional[Embeddings] = None,
|
||
|
api_key: Optional[str] = None,
|
||
|
description: str = "A description for your project",
|
||
|
is_public: bool = True,
|
||
|
reset_project_if_exists: bool = False,
|
||
|
) -> None:
|
||
|
"""
|
||
|
Initialize the Atlas Client
|
||
|
|
||
|
Args:
|
||
|
name (str): The name of your project. If the project already exists,
|
||
|
it will be loaded.
|
||
|
embedding_function (Optional[Embeddings]): An optional function used for
|
||
|
embedding your data. If None, data will be embedded with
|
||
|
Nomic's embed model.
|
||
|
api_key (str): Your nomic API key
|
||
|
description (str): A description for your project.
|
||
|
is_public (bool): Whether your project is publicly accessible.
|
||
|
True by default.
|
||
|
reset_project_if_exists (bool): Whether to reset this project if it
|
||
|
already exists. Default False.
|
||
|
Generally useful during development and testing.
|
||
|
"""
|
||
|
try:
|
||
|
import nomic
|
||
|
from nomic import AtlasProject
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Could not import nomic python package. "
|
||
|
"Please install it with `pip install nomic`."
|
||
|
)
|
||
|
|
||
|
if api_key is None:
|
||
|
raise ValueError("No API key provided. Sign up at atlas.nomic.ai!")
|
||
|
nomic.login(api_key)
|
||
|
|
||
|
self._embedding_function = embedding_function
|
||
|
modality = "text"
|
||
|
if self._embedding_function is not None:
|
||
|
modality = "embedding"
|
||
|
|
||
|
# Check if the project exists, create it if not
|
||
|
self.project = AtlasProject(
|
||
|
name=name,
|
||
|
description=description,
|
||
|
modality=modality,
|
||
|
is_public=is_public,
|
||
|
reset_project_if_exists=reset_project_if_exists,
|
||
|
unique_id_field=AtlasDB._ATLAS_DEFAULT_ID_FIELD,
|
||
|
)
|
||
|
self.project._latest_project_state()
|
||
|
|
||
|
@property
|
||
|
def embeddings(self) -> Optional[Embeddings]:
|
||
|
return self._embedding_function
|
||
|
|
||
|
def add_texts(
|
||
|
self,
|
||
|
texts: Iterable[str],
|
||
|
metadatas: Optional[List[dict]] = None,
|
||
|
ids: Optional[List[str]] = None,
|
||
|
refresh: bool = True,
|
||
|
**kwargs: Any,
|
||
|
) -> List[str]:
|
||
|
"""Run more texts through the embeddings and add to the vectorstore.
|
||
|
|
||
|
Args:
|
||
|
texts (Iterable[str]): Texts to add to the vectorstore.
|
||
|
metadatas (Optional[List[dict]], optional): Optional list of metadatas.
|
||
|
ids (Optional[List[str]]): An optional list of ids.
|
||
|
refresh(bool): Whether or not to refresh indices with the updated data.
|
||
|
Default True.
|
||
|
Returns:
|
||
|
List[str]: List of IDs of the added texts.
|
||
|
"""
|
||
|
|
||
|
if (
|
||
|
metadatas is not None
|
||
|
and len(metadatas) > 0
|
||
|
and "text" in metadatas[0].keys()
|
||
|
):
|
||
|
raise ValueError("Cannot accept key text in metadata!")
|
||
|
|
||
|
texts = list(texts)
|
||
|
if ids is None:
|
||
|
ids = [str(uuid.uuid1()) for _ in texts]
|
||
|
|
||
|
# Embedding upload case
|
||
|
if self._embedding_function is not None:
|
||
|
_embeddings = self._embedding_function.embed_documents(texts)
|
||
|
embeddings = np.stack(_embeddings)
|
||
|
if metadatas is None:
|
||
|
data = [
|
||
|
{AtlasDB._ATLAS_DEFAULT_ID_FIELD: ids[i], "text": texts[i]}
|
||
|
for i, _ in enumerate(texts)
|
||
|
]
|
||
|
else:
|
||
|
for i in range(len(metadatas)):
|
||
|
metadatas[i][AtlasDB._ATLAS_DEFAULT_ID_FIELD] = ids[i]
|
||
|
metadatas[i]["text"] = texts[i]
|
||
|
data = metadatas
|
||
|
|
||
|
self.project._validate_map_data_inputs(
|
||
|
[], id_field=AtlasDB._ATLAS_DEFAULT_ID_FIELD, data=data
|
||
|
)
|
||
|
with self.project.wait_for_project_lock():
|
||
|
self.project.add_embeddings(embeddings=embeddings, data=data)
|
||
|
# Text upload case
|
||
|
else:
|
||
|
if metadatas is None:
|
||
|
data = [
|
||
|
{"text": text, AtlasDB._ATLAS_DEFAULT_ID_FIELD: ids[i]}
|
||
|
for i, text in enumerate(texts)
|
||
|
]
|
||
|
else:
|
||
|
for i, text in enumerate(texts):
|
||
|
metadatas[i]["text"] = texts
|
||
|
metadatas[i][AtlasDB._ATLAS_DEFAULT_ID_FIELD] = ids[i]
|
||
|
data = metadatas
|
||
|
|
||
|
self.project._validate_map_data_inputs(
|
||
|
[], id_field=AtlasDB._ATLAS_DEFAULT_ID_FIELD, data=data
|
||
|
)
|
||
|
|
||
|
with self.project.wait_for_project_lock():
|
||
|
self.project.add_text(data)
|
||
|
|
||
|
if refresh:
|
||
|
if len(self.project.indices) > 0:
|
||
|
with self.project.wait_for_project_lock():
|
||
|
self.project.rebuild_maps()
|
||
|
|
||
|
return ids
|
||
|
|
||
|
def create_index(self, **kwargs: Any) -> Any:
|
||
|
"""Creates an index in your project.
|
||
|
|
||
|
See
|
||
|
https://docs.nomic.ai/atlas_api.html#nomic.project.AtlasProject.create_index
|
||
|
for full detail.
|
||
|
"""
|
||
|
with self.project.wait_for_project_lock():
|
||
|
return self.project.create_index(**kwargs)
|
||
|
|
||
|
def similarity_search(
|
||
|
self,
|
||
|
query: str,
|
||
|
k: int = 4,
|
||
|
**kwargs: Any,
|
||
|
) -> List[Document]:
|
||
|
"""Run similarity search with AtlasDB
|
||
|
|
||
|
Args:
|
||
|
query (str): Query text to search for.
|
||
|
k (int): Number of results to return. Defaults to 4.
|
||
|
|
||
|
Returns:
|
||
|
List[Document]: List of documents most similar to the query text.
|
||
|
"""
|
||
|
if self._embedding_function is None:
|
||
|
raise NotImplementedError(
|
||
|
"AtlasDB requires an embedding_function for text similarity search!"
|
||
|
)
|
||
|
|
||
|
_embedding = self._embedding_function.embed_documents([query])[0]
|
||
|
embedding = np.array(_embedding).reshape(1, -1)
|
||
|
with self.project.wait_for_project_lock():
|
||
|
neighbors, _ = self.project.projections[0].vector_search(
|
||
|
queries=embedding, k=k
|
||
|
)
|
||
|
data = self.project.get_data(ids=neighbors[0])
|
||
|
|
||
|
docs = [
|
||
|
Document(page_content=data[i]["text"], metadata=data[i])
|
||
|
for i, neighbor in enumerate(neighbors)
|
||
|
]
|
||
|
return docs
|
||
|
|
||
|
@classmethod
|
||
|
def from_texts(
|
||
|
cls: Type[AtlasDB],
|
||
|
texts: List[str],
|
||
|
embedding: Optional[Embeddings] = None,
|
||
|
metadatas: Optional[List[dict]] = None,
|
||
|
ids: Optional[List[str]] = None,
|
||
|
name: Optional[str] = None,
|
||
|
api_key: Optional[str] = None,
|
||
|
description: str = "A description for your project",
|
||
|
is_public: bool = True,
|
||
|
reset_project_if_exists: bool = False,
|
||
|
index_kwargs: Optional[dict] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> AtlasDB:
|
||
|
"""Create an AtlasDB vectorstore from a raw documents.
|
||
|
|
||
|
Args:
|
||
|
texts (List[str]): The list of texts to ingest.
|
||
|
name (str): Name of the project to create.
|
||
|
api_key (str): Your nomic API key,
|
||
|
embedding (Optional[Embeddings]): Embedding function. Defaults to None.
|
||
|
metadatas (Optional[List[dict]]): List of metadatas. Defaults to None.
|
||
|
ids (Optional[List[str]]): Optional list of document IDs. If None,
|
||
|
ids will be auto created
|
||
|
description (str): A description for your project.
|
||
|
is_public (bool): Whether your project is publicly accessible.
|
||
|
True by default.
|
||
|
reset_project_if_exists (bool): Whether to reset this project if it
|
||
|
already exists. Default False.
|
||
|
Generally useful during development and testing.
|
||
|
index_kwargs (Optional[dict]): Dict of kwargs for index creation.
|
||
|
See https://docs.nomic.ai/atlas_api.html
|
||
|
|
||
|
Returns:
|
||
|
AtlasDB: Nomic's neural database and finest rhizomatic instrument
|
||
|
"""
|
||
|
if name is None or api_key is None:
|
||
|
raise ValueError("`name` and `api_key` cannot be None.")
|
||
|
|
||
|
# Inject relevant kwargs
|
||
|
all_index_kwargs = {"name": name + "_index", "indexed_field": "text"}
|
||
|
if index_kwargs is not None:
|
||
|
for k, v in index_kwargs.items():
|
||
|
all_index_kwargs[k] = v
|
||
|
|
||
|
# Build project
|
||
|
atlasDB = cls(
|
||
|
name,
|
||
|
embedding_function=embedding,
|
||
|
api_key=api_key,
|
||
|
description="A description for your project",
|
||
|
is_public=is_public,
|
||
|
reset_project_if_exists=reset_project_if_exists,
|
||
|
)
|
||
|
with atlasDB.project.wait_for_project_lock():
|
||
|
atlasDB.add_texts(texts=texts, metadatas=metadatas, ids=ids)
|
||
|
atlasDB.create_index(**all_index_kwargs)
|
||
|
return atlasDB
|
||
|
|
||
|
@classmethod
|
||
|
def from_documents(
|
||
|
cls: Type[AtlasDB],
|
||
|
documents: List[Document],
|
||
|
embedding: Optional[Embeddings] = None,
|
||
|
ids: Optional[List[str]] = None,
|
||
|
name: Optional[str] = None,
|
||
|
api_key: Optional[str] = None,
|
||
|
persist_directory: Optional[str] = None,
|
||
|
description: str = "A description for your project",
|
||
|
is_public: bool = True,
|
||
|
reset_project_if_exists: bool = False,
|
||
|
index_kwargs: Optional[dict] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> AtlasDB:
|
||
|
"""Create an AtlasDB vectorstore from a list of documents.
|
||
|
|
||
|
Args:
|
||
|
name (str): Name of the collection to create.
|
||
|
api_key (str): Your nomic API key,
|
||
|
documents (List[Document]): List of documents to add to the vectorstore.
|
||
|
embedding (Optional[Embeddings]): Embedding function. Defaults to None.
|
||
|
ids (Optional[List[str]]): Optional list of document IDs. If None,
|
||
|
ids will be auto created
|
||
|
description (str): A description for your project.
|
||
|
is_public (bool): Whether your project is publicly accessible.
|
||
|
True by default.
|
||
|
reset_project_if_exists (bool): Whether to reset this project if
|
||
|
it already exists. Default False.
|
||
|
Generally useful during development and testing.
|
||
|
index_kwargs (Optional[dict]): Dict of kwargs for index creation.
|
||
|
See https://docs.nomic.ai/atlas_api.html
|
||
|
|
||
|
Returns:
|
||
|
AtlasDB: Nomic's neural database and finest rhizomatic instrument
|
||
|
"""
|
||
|
if name is None or api_key is None:
|
||
|
raise ValueError("`name` and `api_key` cannot be None.")
|
||
|
texts = [doc.page_content for doc in documents]
|
||
|
metadatas = [doc.metadata for doc in documents]
|
||
|
return cls.from_texts(
|
||
|
name=name,
|
||
|
api_key=api_key,
|
||
|
texts=texts,
|
||
|
embedding=embedding,
|
||
|
metadatas=metadatas,
|
||
|
ids=ids,
|
||
|
description=description,
|
||
|
is_public=is_public,
|
||
|
reset_project_if_exists=reset_project_if_exists,
|
||
|
index_kwargs=index_kwargs,
|
||
|
)
|