langchain/tests/integration_tests/vectorstores/test_chroma.py

284 lines
9.9 KiB
Python
Raw Normal View History

"""Test Chroma functionality."""
import pytest
from langchain.docstore.document import Document
from langchain.vectorstores import Chroma
from tests.integration_tests.vectorstores.fake_embeddings import (
ConsistentFakeEmbeddings,
FakeEmbeddings,
)
def test_chroma() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
docsearch = Chroma.from_texts(
collection_name="test_collection", texts=texts, embedding=FakeEmbeddings()
)
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo")]
@pytest.mark.asyncio
async def test_chroma_async() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
docsearch = Chroma.from_texts(
collection_name="test_collection", texts=texts, embedding=FakeEmbeddings()
)
output = await docsearch.asimilarity_search("foo", k=1)
assert output == [Document(page_content="foo")]
def test_chroma_with_metadatas() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": str(i)} for i in range(len(texts))]
docsearch = Chroma.from_texts(
collection_name="test_collection",
texts=texts,
embedding=FakeEmbeddings(),
metadatas=metadatas,
)
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo", metadata={"page": "0"})]
def test_chroma_with_metadatas_with_scores() -> None:
"""Test end to end construction and scored search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": str(i)} for i in range(len(texts))]
docsearch = Chroma.from_texts(
collection_name="test_collection",
texts=texts,
embedding=FakeEmbeddings(),
metadatas=metadatas,
)
output = docsearch.similarity_search_with_score("foo", k=1)
assert output == [(Document(page_content="foo", metadata={"page": "0"}), 0.0)]
def test_chroma_with_metadatas_with_scores_using_vector() -> None:
"""Test end to end construction and scored search, using embedding vector."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": str(i)} for i in range(len(texts))]
embeddings = FakeEmbeddings()
docsearch = Chroma.from_texts(
collection_name="test_collection",
texts=texts,
embedding=embeddings,
metadatas=metadatas,
)
embedded_query = embeddings.embed_query("foo")
output = docsearch.similarity_search_by_vector_with_relevance_scores(
embedding=embedded_query, k=1
)
assert output == [(Document(page_content="foo", metadata={"page": "0"}), 0.0)]
def test_chroma_search_filter() -> None:
"""Test end to end construction and search with metadata filtering."""
texts = ["far", "bar", "baz"]
metadatas = [{"first_letter": "{}".format(text[0])} for text in texts]
docsearch = Chroma.from_texts(
collection_name="test_collection",
texts=texts,
embedding=FakeEmbeddings(),
metadatas=metadatas,
)
output = docsearch.similarity_search("far", k=1, filter={"first_letter": "f"})
assert output == [Document(page_content="far", metadata={"first_letter": "f"})]
output = docsearch.similarity_search("far", k=1, filter={"first_letter": "b"})
assert output == [Document(page_content="bar", metadata={"first_letter": "b"})]
def test_chroma_search_filter_with_scores() -> None:
"""Test end to end construction and scored search with metadata filtering."""
texts = ["far", "bar", "baz"]
metadatas = [{"first_letter": "{}".format(text[0])} for text in texts]
docsearch = Chroma.from_texts(
collection_name="test_collection",
texts=texts,
embedding=FakeEmbeddings(),
metadatas=metadatas,
)
output = docsearch.similarity_search_with_score(
"far", k=1, filter={"first_letter": "f"}
)
assert output == [
(Document(page_content="far", metadata={"first_letter": "f"}), 0.0)
]
output = docsearch.similarity_search_with_score(
"far", k=1, filter={"first_letter": "b"}
)
assert output == [
(Document(page_content="bar", metadata={"first_letter": "b"}), 1.0)
]
def test_chroma_with_persistence() -> None:
"""Test end to end construction and search, with persistence."""
chroma_persist_dir = "./tests/persist_dir"
collection_name = "test_collection"
texts = ["foo", "bar", "baz"]
docsearch = Chroma.from_texts(
collection_name=collection_name,
texts=texts,
embedding=FakeEmbeddings(),
persist_directory=chroma_persist_dir,
)
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo")]
docsearch.persist()
# Get a new VectorStore from the persisted directory
docsearch = Chroma(
collection_name=collection_name,
embedding_function=FakeEmbeddings(),
persist_directory=chroma_persist_dir,
)
output = docsearch.similarity_search("foo", k=1)
# Clean up
docsearch.delete_collection()
# Persist doesn't need to be called again
# Data will be automatically persisted on object deletion
# Or on program exit
def test_chroma_mmr() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
docsearch = Chroma.from_texts(
collection_name="test_collection", texts=texts, embedding=FakeEmbeddings()
)
output = docsearch.max_marginal_relevance_search("foo", k=1)
assert output == [Document(page_content="foo")]
def test_chroma_mmr_by_vector() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
embeddings = FakeEmbeddings()
docsearch = Chroma.from_texts(
collection_name="test_collection", texts=texts, embedding=embeddings
)
embedded_query = embeddings.embed_query("foo")
output = docsearch.max_marginal_relevance_search_by_vector(embedded_query, k=1)
assert output == [Document(page_content="foo")]
def test_chroma_with_include_parameter() -> None:
"""Test end to end construction and include parameter."""
texts = ["foo", "bar", "baz"]
docsearch = Chroma.from_texts(
collection_name="test_collection", texts=texts, embedding=FakeEmbeddings()
)
output = docsearch.get(include=["embeddings"])
assert output["embeddings"] is not None
output = docsearch.get()
assert output["embeddings"] is None
Fix update_document function, add test and documentation. (#5359) # Fix for `update_document` Function in Chroma ## Summary This pull request addresses an issue with the `update_document` function in the Chroma class, as described in [#5031](https://github.com/hwchase17/langchain/issues/5031#issuecomment-1562577947). The issue was identified as an `AttributeError` raised when calling `update_document` due to a missing corresponding method in the `Collection` object. This fix refactors the `update_document` method in `Chroma` to correctly interact with the `Collection` object. ## Changes 1. Fixed the `update_document` method in the `Chroma` class to correctly call methods on the `Collection` object. 2. Added the corresponding test `test_chroma_update_document` in `tests/integration_tests/vectorstores/test_chroma.py` to reflect the updated method call. 3. Added an example and explanation of how to use the `update_document` function in the Jupyter notebook tutorial for Chroma. ## Test Plan All existing tests pass after this change. In addition, the `test_chroma_update_document` test case now correctly checks the functionality of `update_document`, ensuring that the function works as expected and updates the content of documents correctly. ## Reviewers @dev2049 This fix will ensure that users are able to use the `update_document` function as expected, without encountering the previous `AttributeError`. This will enhance the usability and reliability of the Chroma class for all users. Thank you for considering this pull request. I look forward to your feedback and suggestions.
2023-05-29 13:39:25 +00:00
def test_chroma_update_document() -> None:
"""Test the update_document function in the Chroma class."""
# Make a consistent embedding
embedding = ConsistentFakeEmbeddings()
Fix update_document function, add test and documentation. (#5359) # Fix for `update_document` Function in Chroma ## Summary This pull request addresses an issue with the `update_document` function in the Chroma class, as described in [#5031](https://github.com/hwchase17/langchain/issues/5031#issuecomment-1562577947). The issue was identified as an `AttributeError` raised when calling `update_document` due to a missing corresponding method in the `Collection` object. This fix refactors the `update_document` method in `Chroma` to correctly interact with the `Collection` object. ## Changes 1. Fixed the `update_document` method in the `Chroma` class to correctly call methods on the `Collection` object. 2. Added the corresponding test `test_chroma_update_document` in `tests/integration_tests/vectorstores/test_chroma.py` to reflect the updated method call. 3. Added an example and explanation of how to use the `update_document` function in the Jupyter notebook tutorial for Chroma. ## Test Plan All existing tests pass after this change. In addition, the `test_chroma_update_document` test case now correctly checks the functionality of `update_document`, ensuring that the function works as expected and updates the content of documents correctly. ## Reviewers @dev2049 This fix will ensure that users are able to use the `update_document` function as expected, without encountering the previous `AttributeError`. This will enhance the usability and reliability of the Chroma class for all users. Thank you for considering this pull request. I look forward to your feedback and suggestions.
2023-05-29 13:39:25 +00:00
# Initial document content and id
initial_content = "foo"
document_id = "doc1"
# Create an instance of Document with initial content and metadata
original_doc = Document(page_content=initial_content, metadata={"page": "0"})
# Initialize a Chroma instance with the original document
docsearch = Chroma.from_documents(
collection_name="test_collection",
documents=[original_doc],
embedding=embedding,
Fix update_document function, add test and documentation. (#5359) # Fix for `update_document` Function in Chroma ## Summary This pull request addresses an issue with the `update_document` function in the Chroma class, as described in [#5031](https://github.com/hwchase17/langchain/issues/5031#issuecomment-1562577947). The issue was identified as an `AttributeError` raised when calling `update_document` due to a missing corresponding method in the `Collection` object. This fix refactors the `update_document` method in `Chroma` to correctly interact with the `Collection` object. ## Changes 1. Fixed the `update_document` method in the `Chroma` class to correctly call methods on the `Collection` object. 2. Added the corresponding test `test_chroma_update_document` in `tests/integration_tests/vectorstores/test_chroma.py` to reflect the updated method call. 3. Added an example and explanation of how to use the `update_document` function in the Jupyter notebook tutorial for Chroma. ## Test Plan All existing tests pass after this change. In addition, the `test_chroma_update_document` test case now correctly checks the functionality of `update_document`, ensuring that the function works as expected and updates the content of documents correctly. ## Reviewers @dev2049 This fix will ensure that users are able to use the `update_document` function as expected, without encountering the previous `AttributeError`. This will enhance the usability and reliability of the Chroma class for all users. Thank you for considering this pull request. I look forward to your feedback and suggestions.
2023-05-29 13:39:25 +00:00
ids=[document_id],
)
old_embedding = docsearch._collection.peek()["embeddings"][
docsearch._collection.peek()["ids"].index(document_id)
]
Fix update_document function, add test and documentation. (#5359) # Fix for `update_document` Function in Chroma ## Summary This pull request addresses an issue with the `update_document` function in the Chroma class, as described in [#5031](https://github.com/hwchase17/langchain/issues/5031#issuecomment-1562577947). The issue was identified as an `AttributeError` raised when calling `update_document` due to a missing corresponding method in the `Collection` object. This fix refactors the `update_document` method in `Chroma` to correctly interact with the `Collection` object. ## Changes 1. Fixed the `update_document` method in the `Chroma` class to correctly call methods on the `Collection` object. 2. Added the corresponding test `test_chroma_update_document` in `tests/integration_tests/vectorstores/test_chroma.py` to reflect the updated method call. 3. Added an example and explanation of how to use the `update_document` function in the Jupyter notebook tutorial for Chroma. ## Test Plan All existing tests pass after this change. In addition, the `test_chroma_update_document` test case now correctly checks the functionality of `update_document`, ensuring that the function works as expected and updates the content of documents correctly. ## Reviewers @dev2049 This fix will ensure that users are able to use the `update_document` function as expected, without encountering the previous `AttributeError`. This will enhance the usability and reliability of the Chroma class for all users. Thank you for considering this pull request. I look forward to your feedback and suggestions.
2023-05-29 13:39:25 +00:00
# Define updated content for the document
updated_content = "updated foo"
# Create a new Document instance with the updated content and the same id
updated_doc = Document(page_content=updated_content, metadata={"page": "0"})
# Update the document in the Chroma instance
docsearch.update_document(document_id=document_id, document=updated_doc)
# Perform a similarity search with the updated content
output = docsearch.similarity_search(updated_content, k=1)
# Assert that the updated document is returned by the search
assert output == [Document(page_content=updated_content, metadata={"page": "0"})]
# Assert that the new embedding is correct
new_embedding = docsearch._collection.peek()["embeddings"][
docsearch._collection.peek()["ids"].index(document_id)
]
assert new_embedding == embedding.embed_documents([updated_content])[0]
assert new_embedding != old_embedding
Refactor vector storage to correctly handle relevancy scores (#6570) Description: This pull request aims to support generating the correct generic relevancy scores for different vector stores by refactoring the relevance score functions and their selection in the base class and subclasses of VectorStore. This is especially relevant with VectorStores that require a distance metric upon initialization. Note many of the current implenetations of `_similarity_search_with_relevance_scores` are not technically correct, as they just return `self.similarity_search_with_score(query, k, **kwargs)` without applying the relevant score function Also includes changes associated with: https://github.com/hwchase17/langchain/pull/6564 and https://github.com/hwchase17/langchain/pull/6494 See more indepth discussion in thread in #6494 Issue: https://github.com/hwchase17/langchain/issues/6526 https://github.com/hwchase17/langchain/issues/6481 https://github.com/hwchase17/langchain/issues/6346 Dependencies: None The changes include: - Properly handling score thresholding in FAISS `similarity_search_with_score_by_vector` for the corresponding distance metric. - Refactoring the `_similarity_search_with_relevance_scores` method in the base class and removing it from the subclasses for incorrectly implemented subclasses. - Adding a `_select_relevance_score_fn` method in the base class and implementing it in the subclasses to select the appropriate relevance score function based on the distance strategy. - Updating the `__init__` methods of the subclasses to set the `relevance_score_fn` attribute. - Removing the `_default_relevance_score_fn` function from the FAISS class and using the base class's `_euclidean_relevance_score_fn` instead. - Adding the `DistanceStrategy` enum to the `utils.py` file and updating the imports in the vector store classes. - Updating the tests to import the `DistanceStrategy` enum from the `utils.py` file. --------- Co-authored-by: Hanit <37485638+hanit-com@users.noreply.github.com>
2023-07-11 03:37:03 +00:00
def test_chroma_with_relevance_score() -> None:
"""Test to make sure the relevance score is scaled to 0-1."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": str(i)} for i in range(len(texts))]
docsearch = Chroma.from_texts(
collection_name="test_collection",
texts=texts,
embedding=FakeEmbeddings(),
metadatas=metadatas,
collection_metadata={"hnsw:space": "l2"},
)
output = docsearch.similarity_search_with_relevance_scores("foo", k=3)
assert output == [
(Document(page_content="foo", metadata={"page": "0"}), 1.0),
(Document(page_content="bar", metadata={"page": "1"}), 0.8),
(Document(page_content="baz", metadata={"page": "2"}), 0.5),
]
def test_chroma_with_relevance_score_custom_normalization_fn() -> None:
"""Test searching with relevance score and custom normalization function."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": str(i)} for i in range(len(texts))]
docsearch = Chroma.from_texts(
collection_name="test_collection",
texts=texts,
embedding=FakeEmbeddings(),
metadatas=metadatas,
relevance_score_fn=lambda d: d * 0,
collection_metadata={"hnsw:space": "l2"},
)
output = docsearch.similarity_search_with_relevance_scores("foo", k=3)
assert output == [
(Document(page_content="foo", metadata={"page": "0"}), -0.0),
(Document(page_content="bar", metadata={"page": "1"}), -0.0),
(Document(page_content="baz", metadata={"page": "2"}), -0.0),
]
2023-07-13 07:00:33 +00:00
def test_init_from_client() -> None:
import chromadb
client = chromadb.Client(chromadb.config.Settings())
Chroma(client=client)
def test_init_from_client_settings() -> None:
import chromadb
client_settings = chromadb.config.Settings()
Chroma(client_settings=client_settings)