mirror of
https://github.com/hwchase17/langchain
synced 2024-11-11 19:11:02 +00:00
40 lines
1.4 KiB
Markdown
40 lines
1.4 KiB
Markdown
|
# langchain-mongodb
|
||
|
|
||
|
# Installation
|
||
|
```
|
||
|
pip install -U langchain-mongodb
|
||
|
```
|
||
|
|
||
|
# Usage
|
||
|
- See [integrations doc](../../../docs/docs/integrations/vectorstores/mongodb.ipynb) for more in-depth usage instructions.
|
||
|
- See [Getting Started with the LangChain Integration](https://www.mongodb.com/docs/atlas/atlas-vector-search/ai-integrations/langchain/#get-started-with-the-langchain-integration) for a walkthrough on using your first LangChain implementation with MongoDB Atlas.
|
||
|
|
||
|
## Using MongoDBAtlasVectorSearch
|
||
|
```python
|
||
|
from langchain_mongodb import MongoDBAtlasVectorSearch
|
||
|
|
||
|
# Pull MongoDB Atlas URI from environment variables
|
||
|
MONGODB_ATLAS_CLUSTER_URI = os.environ.get("MONGODB_ATLAS_CLUSTER_URI")
|
||
|
|
||
|
DB_NAME = "langchain_db"
|
||
|
COLLECTION_NAME = "test"
|
||
|
ATLAS_VECTOR_SEARCH_INDEX_NAME = "index_name"
|
||
|
MONGODB_COLLECTION = client[DB_NAME][COLLECITON_NAME]
|
||
|
|
||
|
# Create the vector search via `from_connection_string`
|
||
|
vector_search = MongoDBAtlasVectorSearch.from_connection_string(
|
||
|
MONGODB_ATLAS_CLUSTER_URI,
|
||
|
DB_NAME + "." + COLLECTION_NAME,
|
||
|
OpenAIEmbeddings(disallowed_special=()),
|
||
|
index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,
|
||
|
)
|
||
|
|
||
|
# Initialize MongoDB python client
|
||
|
client = MongoClient(MONGODB_ATLAS_CLUSTER_URI)
|
||
|
# Create the vector search via instantiation
|
||
|
vector_search_2 = MongoDBAtlasVectorSearch(
|
||
|
collection=MONGODB_COLLECTION,
|
||
|
embeddings=OpenAIEmbeddings(disallowed_special=()),
|
||
|
index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,
|
||
|
)
|
||
|
```
|