langchain/libs/partners/mongodb/README.md

40 lines
1.4 KiB
Markdown
Raw Normal View History

mongodb[minor]: MongoDB Partner Package -- Porting MongoDBAtlasVectorSearch (#17652) This PR migrates the existing MongoDBAtlasVectorSearch abstraction from the `langchain_community` section to the partners package section of the codebase. - [x] Run the partner package script as advised in the partner-packages documentation. - [x] Add Unit Tests - [x] Migrate Integration Tests - [x] Refactor `MongoDBAtlasVectorStore` (autogenerated) to `MongoDBAtlasVectorSearch` - [x] ~Remove~ deprecate the old `langchain_community` VectorStore references. ## Additional Callouts - Implemented the `delete` method - Included any missing async function implementations - `amax_marginal_relevance_search_by_vector` - `adelete` - Added new Unit Tests that test for functionality of `MongoDBVectorSearch` methods - Removed [`del res[self._embedding_key]`](https://github.com/langchain-ai/langchain/blob/e0c81e1cb0ede673a69aae6434e17e34868c3bcc/libs/community/langchain_community/vectorstores/mongodb_atlas.py#L218) in `_similarity_search_with_score` function as it would make the `maximal_marginal_relevance` function fail otherwise. The `Document` needs to store the embedding key in metadata to work. Checklist: - [x] PR title: Please title your PR "package: description", where "package" is whichever of langchain, community, core, experimental, etc. is being modified. Use "docs: ..." for purely docs changes, "templates: ..." for template changes, "infra: ..." for CI changes. - Example: "community: add foobar LLM" - [x] PR message - [x] Pass lint and test: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified to check that you're passing lint and testing. See contribution guidelines for more information on how to write/run tests, lint, etc: https://python.langchain.com/docs/contributing/ - [x] Add tests and docs: If you're adding a new integration, please include 1. Existing tests supplied in docs/docs do not change. Updated docstrings for new functions like `delete` 2. an example notebook showing its use. It lives in `docs/docs/integrations` directory. (This already exists) If no one reviews your PR within a few days, please @-mention one of baskaryan, efriis, eyurtsev, hwchase17. --------- Co-authored-by: Steven Silvester <steven.silvester@ieee.org> Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-29 23:09:48 +00:00
# langchain-mongodb
# Installation
```
pip install -U langchain-mongodb
```
# Usage
- See [integrations doc](../../../docs/docs/integrations/vectorstores/mongodb.ipynb) for more in-depth usage instructions.
- See [Getting Started with the LangChain Integration](https://www.mongodb.com/docs/atlas/atlas-vector-search/ai-integrations/langchain/#get-started-with-the-langchain-integration) for a walkthrough on using your first LangChain implementation with MongoDB Atlas.
## Using MongoDBAtlasVectorSearch
```python
from langchain_mongodb import MongoDBAtlasVectorSearch
# Pull MongoDB Atlas URI from environment variables
MONGODB_ATLAS_CLUSTER_URI = os.environ.get("MONGODB_ATLAS_CLUSTER_URI")
DB_NAME = "langchain_db"
COLLECTION_NAME = "test"
ATLAS_VECTOR_SEARCH_INDEX_NAME = "index_name"
MONGODB_COLLECTION = client[DB_NAME][COLLECITON_NAME]
# Create the vector search via `from_connection_string`
vector_search = MongoDBAtlasVectorSearch.from_connection_string(
MONGODB_ATLAS_CLUSTER_URI,
DB_NAME + "." + COLLECTION_NAME,
OpenAIEmbeddings(disallowed_special=()),
index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,
)
# Initialize MongoDB python client
client = MongoClient(MONGODB_ATLAS_CLUSTER_URI)
# Create the vector search via instantiation
vector_search_2 = MongoDBAtlasVectorSearch(
collection=MONGODB_COLLECTION,
embeddings=OpenAIEmbeddings(disallowed_special=()),
index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,
)
```