mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
183 lines
5.8 KiB
Python
183 lines
5.8 KiB
Python
|
from __future__ import annotations
|
||
|
|
||
|
from enum import Enum
|
||
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional
|
||
|
|
||
|
from langchain_core.callbacks import (
|
||
|
AsyncCallbackManagerForRetrieverRun,
|
||
|
CallbackManagerForRetrieverRun,
|
||
|
)
|
||
|
from langchain_core.documents import Document
|
||
|
from langchain_core.pydantic_v1 import root_validator
|
||
|
from langchain_core.retrievers import BaseRetriever
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from zep_python.memory import MemorySearchResult
|
||
|
|
||
|
|
||
|
class SearchScope(str, Enum):
|
||
|
"""Which documents to search. Messages or Summaries?"""
|
||
|
|
||
|
messages = "messages"
|
||
|
"""Search chat history messages."""
|
||
|
summary = "summary"
|
||
|
"""Search chat history summaries."""
|
||
|
|
||
|
|
||
|
class SearchType(str, Enum):
|
||
|
"""Enumerator of the types of search to perform."""
|
||
|
|
||
|
similarity = "similarity"
|
||
|
"""Similarity search."""
|
||
|
mmr = "mmr"
|
||
|
"""Maximal Marginal Relevance reranking of similarity search."""
|
||
|
|
||
|
|
||
|
class ZepRetriever(BaseRetriever):
|
||
|
"""`Zep` MemoryStore Retriever.
|
||
|
|
||
|
Search your user's long-term chat history with Zep.
|
||
|
|
||
|
Zep offers both simple semantic search and Maximal Marginal Relevance (MMR)
|
||
|
reranking of search results.
|
||
|
|
||
|
Note: You will need to provide the user's `session_id` to use this retriever.
|
||
|
|
||
|
Args:
|
||
|
url: URL of your Zep server (required)
|
||
|
api_key: Your Zep API key (optional)
|
||
|
session_id: Identifies your user or a user's session (required)
|
||
|
top_k: Number of documents to return (default: 3, optional)
|
||
|
search_type: Type of search to perform (similarity / mmr) (default: similarity,
|
||
|
optional)
|
||
|
mmr_lambda: Lambda value for MMR search. Defaults to 0.5 (optional)
|
||
|
|
||
|
Zep - Fast, scalable building blocks for LLM Apps
|
||
|
=========
|
||
|
Zep is an open source platform for productionizing LLM apps. Go from a prototype
|
||
|
built in LangChain or LlamaIndex, or a custom app, to production in minutes without
|
||
|
rewriting code.
|
||
|
|
||
|
For server installation instructions, see:
|
||
|
https://docs.getzep.com/deployment/quickstart/
|
||
|
"""
|
||
|
|
||
|
zep_client: Optional[Any] = None
|
||
|
"""Zep client."""
|
||
|
url: str
|
||
|
"""URL of your Zep server."""
|
||
|
api_key: Optional[str] = None
|
||
|
"""Your Zep API key."""
|
||
|
session_id: str
|
||
|
"""Zep session ID."""
|
||
|
top_k: Optional[int]
|
||
|
"""Number of items to return."""
|
||
|
search_scope: SearchScope = SearchScope.messages
|
||
|
"""Which documents to search. Messages or Summaries?"""
|
||
|
search_type: SearchType = SearchType.similarity
|
||
|
"""Type of search to perform (similarity / mmr)"""
|
||
|
mmr_lambda: Optional[float] = None
|
||
|
"""Lambda value for MMR search."""
|
||
|
|
||
|
@root_validator(pre=True)
|
||
|
def create_client(cls, values: dict) -> dict:
|
||
|
try:
|
||
|
from zep_python import ZepClient
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Could not import zep-python package. "
|
||
|
"Please install it with `pip install zep-python`."
|
||
|
)
|
||
|
values["zep_client"] = values.get(
|
||
|
"zep_client",
|
||
|
ZepClient(base_url=values["url"], api_key=values.get("api_key")),
|
||
|
)
|
||
|
return values
|
||
|
|
||
|
def _messages_search_result_to_doc(
|
||
|
self, results: List[MemorySearchResult]
|
||
|
) -> List[Document]:
|
||
|
return [
|
||
|
Document(
|
||
|
page_content=r.message.pop("content"),
|
||
|
metadata={"score": r.dist, **r.message},
|
||
|
)
|
||
|
for r in results
|
||
|
if r.message
|
||
|
]
|
||
|
|
||
|
def _summary_search_result_to_doc(
|
||
|
self, results: List[MemorySearchResult]
|
||
|
) -> List[Document]:
|
||
|
return [
|
||
|
Document(
|
||
|
page_content=r.summary.content,
|
||
|
metadata={
|
||
|
"score": r.dist,
|
||
|
"uuid": r.summary.uuid,
|
||
|
"created_at": r.summary.created_at,
|
||
|
"token_count": r.summary.token_count,
|
||
|
},
|
||
|
)
|
||
|
for r in results
|
||
|
if r.summary
|
||
|
]
|
||
|
|
||
|
def _get_relevant_documents(
|
||
|
self,
|
||
|
query: str,
|
||
|
*,
|
||
|
run_manager: CallbackManagerForRetrieverRun,
|
||
|
metadata: Optional[Dict[str, Any]] = None,
|
||
|
) -> List[Document]:
|
||
|
from zep_python.memory import MemorySearchPayload
|
||
|
|
||
|
if not self.zep_client:
|
||
|
raise RuntimeError("Zep client not initialized.")
|
||
|
|
||
|
payload = MemorySearchPayload(
|
||
|
text=query,
|
||
|
metadata=metadata,
|
||
|
search_scope=self.search_scope,
|
||
|
search_type=self.search_type,
|
||
|
mmr_lambda=self.mmr_lambda,
|
||
|
)
|
||
|
|
||
|
results: List[MemorySearchResult] = self.zep_client.memory.search_memory(
|
||
|
self.session_id, payload, limit=self.top_k
|
||
|
)
|
||
|
|
||
|
if self.search_scope == SearchScope.summary:
|
||
|
return self._summary_search_result_to_doc(results)
|
||
|
|
||
|
return self._messages_search_result_to_doc(results)
|
||
|
|
||
|
async def _aget_relevant_documents(
|
||
|
self,
|
||
|
query: str,
|
||
|
*,
|
||
|
run_manager: AsyncCallbackManagerForRetrieverRun,
|
||
|
metadata: Optional[Dict[str, Any]] = None,
|
||
|
) -> List[Document]:
|
||
|
from zep_python.memory import MemorySearchPayload
|
||
|
|
||
|
if not self.zep_client:
|
||
|
raise RuntimeError("Zep client not initialized.")
|
||
|
|
||
|
payload = MemorySearchPayload(
|
||
|
text=query,
|
||
|
metadata=metadata,
|
||
|
search_scope=self.search_scope,
|
||
|
search_type=self.search_type,
|
||
|
mmr_lambda=self.mmr_lambda,
|
||
|
)
|
||
|
|
||
|
results: List[MemorySearchResult] = await self.zep_client.memory.asearch_memory(
|
||
|
self.session_id, payload, limit=self.top_k
|
||
|
)
|
||
|
|
||
|
if self.search_scope == SearchScope.summary:
|
||
|
return self._summary_search_result_to_doc(results)
|
||
|
|
||
|
return self._messages_search_result_to_doc(results)
|