mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
61 lines
1.9 KiB
Python
61 lines
1.9 KiB
Python
|
from __future__ import annotations
|
||
|
|
||
|
from typing import Any, List
|
||
|
|
||
|
from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
||
|
from langchain_core.documents import Document
|
||
|
from langchain_core.retrievers import BaseRetriever
|
||
|
|
||
|
|
||
|
class KayAiRetriever(BaseRetriever):
|
||
|
"""
|
||
|
Retriever for Kay.ai datasets.
|
||
|
|
||
|
To work properly, expects you to have KAY_API_KEY env variable set.
|
||
|
You can get one for free at https://kay.ai/.
|
||
|
"""
|
||
|
|
||
|
client: Any
|
||
|
num_contexts: int
|
||
|
|
||
|
@classmethod
|
||
|
def create(
|
||
|
cls,
|
||
|
dataset_id: str,
|
||
|
data_types: List[str],
|
||
|
num_contexts: int = 6,
|
||
|
) -> KayAiRetriever:
|
||
|
"""
|
||
|
Create a KayRetriever given a Kay dataset id and a list of datasources.
|
||
|
|
||
|
Args:
|
||
|
dataset_id: A dataset id category in Kay, like "company"
|
||
|
data_types: A list of datasources present within a dataset. For
|
||
|
"company" the corresponding datasources could be
|
||
|
["10-K", "10-Q", "8-K", "PressRelease"].
|
||
|
num_contexts: The number of documents to retrieve on each query.
|
||
|
Defaults to 6.
|
||
|
"""
|
||
|
try:
|
||
|
from kay.rag.retrievers import KayRetriever
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Could not import kay python package. Please install it with "
|
||
|
"`pip install kay`.",
|
||
|
)
|
||
|
|
||
|
client = KayRetriever(dataset_id, data_types)
|
||
|
return cls(client=client, num_contexts=num_contexts)
|
||
|
|
||
|
def _get_relevant_documents(
|
||
|
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
||
|
) -> List[Document]:
|
||
|
ctxs = self.client.query(query=query, num_context=self.num_contexts)
|
||
|
docs = []
|
||
|
for ctx in ctxs:
|
||
|
page_content = ctx.pop("chunk_embed_text", None)
|
||
|
if page_content is None:
|
||
|
continue
|
||
|
docs.append(Document(page_content=page_content, metadata={**ctx}))
|
||
|
return docs
|