mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
135 lines
4.4 KiB
Python
135 lines
4.4 KiB
Python
|
from __future__ import annotations
|
||
|
|
||
|
from copy import deepcopy
|
||
|
from typing import Any, Dict, List, Optional, Sequence, Union
|
||
|
|
||
|
from langchain_core.callbacks.base import Callbacks
|
||
|
from langchain_core.documents import BaseDocumentCompressor, Document
|
||
|
from langchain_core.pydantic_v1 import Extra, root_validator
|
||
|
from langchain_core.utils import get_from_dict_or_env
|
||
|
|
||
|
|
||
|
class VolcengineRerank(BaseDocumentCompressor):
|
||
|
"""Document compressor that uses `Volcengine Rerank API`."""
|
||
|
|
||
|
client: Any = None
|
||
|
"""Volcengine client to use for compressing documents."""
|
||
|
|
||
|
ak: Optional[str] = None
|
||
|
"""Access Key ID.
|
||
|
https://www.volcengine.com/docs/84313/1254553"""
|
||
|
|
||
|
sk: Optional[str] = None
|
||
|
"""Secret Access Key.
|
||
|
https://www.volcengine.com/docs/84313/1254553"""
|
||
|
|
||
|
region: str = "api-vikingdb.volces.com"
|
||
|
"""https://www.volcengine.com/docs/84313/1254488. """
|
||
|
|
||
|
host: str = "cn-beijing"
|
||
|
"""https://www.volcengine.com/docs/84313/1254488. """
|
||
|
|
||
|
top_n: Optional[int] = 3
|
||
|
"""Number of documents to return."""
|
||
|
|
||
|
class Config:
|
||
|
"""Configuration for this pydantic object."""
|
||
|
|
||
|
extra = Extra.forbid
|
||
|
arbitrary_types_allowed = True
|
||
|
allow_population_by_field_name = True
|
||
|
|
||
|
@root_validator()
|
||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||
|
"""Validate that api key and python package exists in environment."""
|
||
|
|
||
|
if not values.get("client"):
|
||
|
try:
|
||
|
from volcengine.viking_db import VikingDBService
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Could not import volcengine python package. "
|
||
|
"Please install it with `pip install volcengine` "
|
||
|
"or `pip install --user volcengine`."
|
||
|
)
|
||
|
|
||
|
values["ak"] = get_from_dict_or_env(values, "ak", "VOLC_API_AK")
|
||
|
values["sk"] = get_from_dict_or_env(values, "sk", "VOLC_API_SK")
|
||
|
|
||
|
values["client"] = VikingDBService(
|
||
|
host="api-vikingdb.volces.com",
|
||
|
region="cn-beijing",
|
||
|
scheme="https",
|
||
|
connection_timeout=30,
|
||
|
socket_timeout=30,
|
||
|
ak=values["ak"],
|
||
|
sk=values["sk"],
|
||
|
)
|
||
|
|
||
|
return values
|
||
|
|
||
|
def rerank(
|
||
|
self,
|
||
|
documents: Sequence[Union[str, Document, dict]],
|
||
|
query: str,
|
||
|
*,
|
||
|
top_n: Optional[int] = -1,
|
||
|
) -> List[Dict[str, Any]]:
|
||
|
"""Returns an ordered list of documents ordered by their relevance to the provided query.
|
||
|
|
||
|
Args:
|
||
|
query: The query to use for reranking.
|
||
|
documents: A sequence of documents to rerank.
|
||
|
top_n : The number of results to return. If None returns all results.
|
||
|
Defaults to self.top_n.
|
||
|
""" # noqa: E501
|
||
|
|
||
|
if len(documents) == 0: # to avoid empty api call
|
||
|
return []
|
||
|
docs = [
|
||
|
{
|
||
|
"query": query,
|
||
|
"content": doc.page_content if isinstance(doc, Document) else doc,
|
||
|
}
|
||
|
for doc in documents
|
||
|
]
|
||
|
|
||
|
from volcengine.viking_db import VikingDBService
|
||
|
|
||
|
client: VikingDBService = self.client
|
||
|
results = client.batch_rerank(docs)
|
||
|
|
||
|
result_dicts = []
|
||
|
for index, score in enumerate(results):
|
||
|
result_dicts.append({"index": index, "relevance_score": score})
|
||
|
|
||
|
result_dicts.sort(key=lambda x: x["relevance_score"], reverse=True)
|
||
|
top_n = top_n if (top_n is None or top_n > 0) else self.top_n
|
||
|
|
||
|
return result_dicts[:top_n]
|
||
|
|
||
|
def compress_documents(
|
||
|
self,
|
||
|
documents: Sequence[Document],
|
||
|
query: str,
|
||
|
callbacks: Optional[Callbacks] = None,
|
||
|
) -> Sequence[Document]:
|
||
|
"""
|
||
|
Compress documents using Volcengine's rerank API.
|
||
|
|
||
|
Args:
|
||
|
documents: A sequence of documents to compress.
|
||
|
query: The query to use for compressing the documents.
|
||
|
callbacks: Callbacks to run during the compression process.
|
||
|
|
||
|
Returns:
|
||
|
A sequence of compressed documents.
|
||
|
"""
|
||
|
compressed = []
|
||
|
for res in self.rerank(documents, query):
|
||
|
doc = documents[res["index"]]
|
||
|
doc_copy = Document(doc.page_content, metadata=deepcopy(doc.metadata))
|
||
|
doc_copy.metadata["relevance_score"] = res["relevance_score"]
|
||
|
compressed.append(doc_copy)
|
||
|
return compressed
|