2023-12-11 21:53:30 +00:00
|
|
|
import base64
|
|
|
|
import hashlib
|
|
|
|
import hmac
|
|
|
|
import json
|
|
|
|
import logging
|
|
|
|
import time
|
|
|
|
from typing import Any, Dict, Iterator, List, Mapping, Optional, Type
|
|
|
|
from urllib.parse import urlparse
|
|
|
|
|
|
|
|
import requests
|
|
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
|
|
from langchain_core.language_models.chat_models import (
|
|
|
|
BaseChatModel,
|
|
|
|
generate_from_stream,
|
|
|
|
)
|
|
|
|
from langchain_core.messages import (
|
|
|
|
AIMessage,
|
|
|
|
AIMessageChunk,
|
|
|
|
BaseMessage,
|
|
|
|
BaseMessageChunk,
|
|
|
|
ChatMessage,
|
|
|
|
ChatMessageChunk,
|
|
|
|
HumanMessage,
|
|
|
|
HumanMessageChunk,
|
|
|
|
)
|
|
|
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
|
|
|
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
|
|
|
|
from langchain_core.utils import (
|
|
|
|
convert_to_secret_str,
|
|
|
|
get_from_dict_or_env,
|
|
|
|
get_pydantic_field_names,
|
|
|
|
)
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
DEFAULT_API_BASE = "https://hunyuan.cloud.tencent.com"
|
|
|
|
DEFAULT_PATH = "/hyllm/v1/chat/completions"
|
|
|
|
|
|
|
|
|
|
|
|
def _convert_message_to_dict(message: BaseMessage) -> dict:
|
|
|
|
message_dict: Dict[str, Any]
|
|
|
|
if isinstance(message, ChatMessage):
|
|
|
|
message_dict = {"role": message.role, "content": message.content}
|
|
|
|
elif isinstance(message, HumanMessage):
|
|
|
|
message_dict = {"role": "user", "content": message.content}
|
|
|
|
elif isinstance(message, AIMessage):
|
|
|
|
message_dict = {"role": "assistant", "content": message.content}
|
|
|
|
else:
|
|
|
|
raise TypeError(f"Got unknown type {message}")
|
|
|
|
|
|
|
|
return message_dict
|
|
|
|
|
|
|
|
|
|
|
|
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
|
|
|
|
role = _dict["role"]
|
|
|
|
if role == "user":
|
|
|
|
return HumanMessage(content=_dict["content"])
|
|
|
|
elif role == "assistant":
|
|
|
|
return AIMessage(content=_dict.get("content", "") or "")
|
|
|
|
else:
|
|
|
|
return ChatMessage(content=_dict["content"], role=role)
|
|
|
|
|
|
|
|
|
|
|
|
def _convert_delta_to_message_chunk(
|
|
|
|
_dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
|
|
|
|
) -> BaseMessageChunk:
|
|
|
|
role = _dict.get("role")
|
|
|
|
content = _dict.get("content") or ""
|
|
|
|
|
|
|
|
if role == "user" or default_class == HumanMessageChunk:
|
|
|
|
return HumanMessageChunk(content=content)
|
|
|
|
elif role == "assistant" or default_class == AIMessageChunk:
|
|
|
|
return AIMessageChunk(content=content)
|
|
|
|
elif role or default_class == ChatMessageChunk:
|
2024-05-13 18:55:07 +00:00
|
|
|
return ChatMessageChunk(content=content, role=role) # type: ignore[arg-type]
|
2023-12-11 21:53:30 +00:00
|
|
|
else:
|
2024-05-13 18:55:07 +00:00
|
|
|
return default_class(content=content) # type: ignore[call-arg]
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
|
|
|
|
# signature generation
|
|
|
|
# https://cloud.tencent.com/document/product/1729/97732#532252ce-e960-48a7-8821-940a9ce2ccf3
|
|
|
|
def _signature(secret_key: SecretStr, url: str, payload: Dict[str, Any]) -> str:
|
|
|
|
sorted_keys = sorted(payload.keys())
|
|
|
|
|
|
|
|
url_info = urlparse(url)
|
|
|
|
|
|
|
|
sign_str = url_info.netloc + url_info.path + "?"
|
|
|
|
|
|
|
|
for key in sorted_keys:
|
|
|
|
value = payload[key]
|
|
|
|
|
|
|
|
if isinstance(value, list) or isinstance(value, dict):
|
community[patch]: fix hunyuan message include chinese signature error (#22795) (#22796)
… (#22795)
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-06-12 16:30:22 +00:00
|
|
|
value = json.dumps(value, separators=(",", ":"), ensure_ascii=False)
|
2023-12-11 21:53:30 +00:00
|
|
|
elif isinstance(value, float):
|
|
|
|
value = "%g" % value
|
|
|
|
|
|
|
|
sign_str = sign_str + key + "=" + str(value) + "&"
|
|
|
|
|
|
|
|
sign_str = sign_str[:-1]
|
|
|
|
|
|
|
|
hmacstr = hmac.new(
|
|
|
|
key=secret_key.get_secret_value().encode("utf-8"),
|
|
|
|
msg=sign_str.encode("utf-8"),
|
|
|
|
digestmod=hashlib.sha1,
|
|
|
|
).digest()
|
|
|
|
|
|
|
|
return base64.b64encode(hmacstr).decode("utf-8")
|
|
|
|
|
|
|
|
|
|
|
|
def _create_chat_result(response: Mapping[str, Any]) -> ChatResult:
|
|
|
|
generations = []
|
|
|
|
for choice in response["choices"]:
|
|
|
|
message = _convert_dict_to_message(choice["messages"])
|
|
|
|
generations.append(ChatGeneration(message=message))
|
|
|
|
|
|
|
|
token_usage = response["usage"]
|
|
|
|
llm_output = {"token_usage": token_usage}
|
|
|
|
return ChatResult(generations=generations, llm_output=llm_output)
|
|
|
|
|
|
|
|
|
|
|
|
class ChatHunyuan(BaseChatModel):
|
|
|
|
"""Tencent Hunyuan chat models API by Tencent.
|
|
|
|
|
|
|
|
For more information, see https://cloud.tencent.com/document/product/1729
|
|
|
|
"""
|
|
|
|
|
|
|
|
@property
|
|
|
|
def lc_secrets(self) -> Dict[str, str]:
|
|
|
|
return {
|
|
|
|
"hunyuan_app_id": "HUNYUAN_APP_ID",
|
|
|
|
"hunyuan_secret_id": "HUNYUAN_SECRET_ID",
|
|
|
|
"hunyuan_secret_key": "HUNYUAN_SECRET_KEY",
|
|
|
|
}
|
|
|
|
|
|
|
|
@property
|
|
|
|
def lc_serializable(self) -> bool:
|
|
|
|
return True
|
|
|
|
|
|
|
|
hunyuan_api_base: str = Field(default=DEFAULT_API_BASE)
|
|
|
|
"""Hunyuan custom endpoints"""
|
|
|
|
hunyuan_app_id: Optional[int] = None
|
|
|
|
"""Hunyuan App ID"""
|
|
|
|
hunyuan_secret_id: Optional[str] = None
|
|
|
|
"""Hunyuan Secret ID"""
|
|
|
|
hunyuan_secret_key: Optional[SecretStr] = None
|
|
|
|
"""Hunyuan Secret Key"""
|
|
|
|
streaming: bool = False
|
|
|
|
"""Whether to stream the results or not."""
|
|
|
|
request_timeout: int = 60
|
|
|
|
"""Timeout for requests to Hunyuan API. Default is 60 seconds."""
|
|
|
|
|
|
|
|
query_id: Optional[str] = None
|
|
|
|
"""Query id for troubleshooting"""
|
|
|
|
temperature: float = 1.0
|
|
|
|
"""What sampling temperature to use."""
|
|
|
|
top_p: float = 1.0
|
|
|
|
"""What probability mass to use."""
|
|
|
|
|
|
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
|
|
"""Holds any model parameters valid for API call not explicitly specified."""
|
|
|
|
|
|
|
|
class Config:
|
|
|
|
"""Configuration for this pydantic object."""
|
|
|
|
|
|
|
|
allow_population_by_field_name = True
|
|
|
|
|
|
|
|
@root_validator(pre=True)
|
|
|
|
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
|
"""Build extra kwargs from additional params that were passed in."""
|
|
|
|
all_required_field_names = get_pydantic_field_names(cls)
|
|
|
|
extra = values.get("model_kwargs", {})
|
|
|
|
for field_name in list(values):
|
|
|
|
if field_name in extra:
|
|
|
|
raise ValueError(f"Found {field_name} supplied twice.")
|
|
|
|
if field_name not in all_required_field_names:
|
|
|
|
logger.warning(
|
|
|
|
f"""WARNING! {field_name} is not default parameter.
|
|
|
|
{field_name} was transferred to model_kwargs.
|
|
|
|
Please confirm that {field_name} is what you intended."""
|
|
|
|
)
|
|
|
|
extra[field_name] = values.pop(field_name)
|
|
|
|
|
|
|
|
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
|
|
|
|
if invalid_model_kwargs:
|
|
|
|
raise ValueError(
|
|
|
|
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
|
|
|
|
f"Instead they were passed in as part of `model_kwargs` parameter."
|
|
|
|
)
|
|
|
|
|
|
|
|
values["model_kwargs"] = extra
|
|
|
|
return values
|
|
|
|
|
|
|
|
@root_validator()
|
|
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
|
|
values["hunyuan_api_base"] = get_from_dict_or_env(
|
|
|
|
values,
|
|
|
|
"hunyuan_api_base",
|
|
|
|
"HUNYUAN_API_BASE",
|
|
|
|
DEFAULT_API_BASE,
|
|
|
|
)
|
|
|
|
values["hunyuan_app_id"] = get_from_dict_or_env(
|
|
|
|
values,
|
|
|
|
"hunyuan_app_id",
|
|
|
|
"HUNYUAN_APP_ID",
|
|
|
|
)
|
|
|
|
values["hunyuan_secret_id"] = get_from_dict_or_env(
|
|
|
|
values,
|
|
|
|
"hunyuan_secret_id",
|
|
|
|
"HUNYUAN_SECRET_ID",
|
|
|
|
)
|
|
|
|
values["hunyuan_secret_key"] = convert_to_secret_str(
|
|
|
|
get_from_dict_or_env(
|
|
|
|
values,
|
|
|
|
"hunyuan_secret_key",
|
|
|
|
"HUNYUAN_SECRET_KEY",
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
return values
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
|
|
"""Get the default parameters for calling Hunyuan API."""
|
|
|
|
normal_params = {
|
|
|
|
"app_id": self.hunyuan_app_id,
|
|
|
|
"secret_id": self.hunyuan_secret_id,
|
|
|
|
"temperature": self.temperature,
|
|
|
|
"top_p": self.top_p,
|
|
|
|
}
|
|
|
|
|
|
|
|
if self.query_id is not None:
|
|
|
|
normal_params["query_id"] = self.query_id
|
|
|
|
|
|
|
|
return {**normal_params, **self.model_kwargs}
|
|
|
|
|
|
|
|
def _generate(
|
|
|
|
self,
|
|
|
|
messages: List[BaseMessage],
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> ChatResult:
|
|
|
|
if self.streaming:
|
|
|
|
stream_iter = self._stream(
|
|
|
|
messages=messages, stop=stop, run_manager=run_manager, **kwargs
|
|
|
|
)
|
|
|
|
return generate_from_stream(stream_iter)
|
|
|
|
|
|
|
|
res = self._chat(messages, **kwargs)
|
|
|
|
|
|
|
|
response = res.json()
|
|
|
|
|
|
|
|
if "error" in response:
|
|
|
|
raise ValueError(f"Error from Hunyuan api response: {response}")
|
|
|
|
|
|
|
|
return _create_chat_result(response)
|
|
|
|
|
|
|
|
def _stream(
|
|
|
|
self,
|
|
|
|
messages: List[BaseMessage],
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
|
|
res = self._chat(messages, **kwargs)
|
|
|
|
|
|
|
|
default_chunk_class = AIMessageChunk
|
|
|
|
for chunk in res.iter_lines():
|
community[patch]: fix hunyuan client json analysis (#22452) (#22767)
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-06-11 19:05:18 +00:00
|
|
|
chunk = chunk.decode(encoding="UTF-8", errors="strict").replace(
|
|
|
|
"data: ", ""
|
|
|
|
)
|
|
|
|
if len(chunk) == 0:
|
|
|
|
continue
|
2023-12-11 21:53:30 +00:00
|
|
|
response = json.loads(chunk)
|
|
|
|
if "error" in response:
|
|
|
|
raise ValueError(f"Error from Hunyuan api response: {response}")
|
|
|
|
|
|
|
|
for choice in response["choices"]:
|
|
|
|
chunk = _convert_delta_to_message_chunk(
|
|
|
|
choice["delta"], default_chunk_class
|
|
|
|
)
|
|
|
|
default_chunk_class = chunk.__class__
|
2024-02-21 23:32:28 +00:00
|
|
|
cg_chunk = ChatGenerationChunk(message=chunk)
|
2023-12-11 21:53:30 +00:00
|
|
|
if run_manager:
|
2024-02-21 23:32:28 +00:00
|
|
|
run_manager.on_llm_new_token(chunk.content, chunk=cg_chunk)
|
2024-02-23 00:15:21 +00:00
|
|
|
yield cg_chunk
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
def _chat(self, messages: List[BaseMessage], **kwargs: Any) -> requests.Response:
|
|
|
|
if self.hunyuan_secret_key is None:
|
|
|
|
raise ValueError("Hunyuan secret key is not set.")
|
|
|
|
|
|
|
|
parameters = {**self._default_params, **kwargs}
|
|
|
|
|
|
|
|
headers = parameters.pop("headers", {})
|
|
|
|
timestamp = parameters.pop("timestamp", int(time.time()))
|
|
|
|
expired = parameters.pop("expired", timestamp + 24 * 60 * 60)
|
|
|
|
|
|
|
|
payload = {
|
|
|
|
"timestamp": timestamp,
|
|
|
|
"expired": expired,
|
|
|
|
"messages": [_convert_message_to_dict(m) for m in messages],
|
|
|
|
**parameters,
|
|
|
|
}
|
|
|
|
|
|
|
|
if self.streaming:
|
|
|
|
payload["stream"] = 1
|
|
|
|
|
|
|
|
url = self.hunyuan_api_base + DEFAULT_PATH
|
|
|
|
|
|
|
|
res = requests.post(
|
|
|
|
url=url,
|
|
|
|
timeout=self.request_timeout,
|
|
|
|
headers={
|
|
|
|
"Content-Type": "application/json",
|
|
|
|
"Authorization": _signature(
|
|
|
|
secret_key=self.hunyuan_secret_key, url=url, payload=payload
|
|
|
|
),
|
|
|
|
**headers,
|
|
|
|
},
|
|
|
|
json=payload,
|
|
|
|
stream=self.streaming,
|
|
|
|
)
|
|
|
|
return res
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _llm_type(self) -> str:
|
|
|
|
return "hunyuan-chat"
|