2024-03-26 14:38:10 +00:00
|
|
|
"""Generate **synthetic data** using LLM and few-shot template."""
|
infra: update mypy 1.10, ruff 0.5 (#23721)
```python
"""python scripts/update_mypy_ruff.py"""
import glob
import tomllib
from pathlib import Path
import toml
import subprocess
import re
ROOT_DIR = Path(__file__).parents[1]
def main():
for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True):
print(path)
with open(path, "rb") as f:
pyproject = tomllib.load(f)
try:
pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = (
"^1.10"
)
pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = (
"^0.5"
)
except KeyError:
continue
with open(path, "w") as f:
toml.dump(pyproject, f)
cwd = "/".join(path.split("/")[:-1])
completed = subprocess.run(
"poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color",
cwd=cwd,
shell=True,
capture_output=True,
text=True,
)
logs = completed.stdout.split("\n")
to_ignore = {}
for l in logs:
if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l):
path, line_no, error_type = re.match(
"^(.*)\:(\d+)\: error:.*\[(.*)\]", l
).groups()
if (path, line_no) in to_ignore:
to_ignore[(path, line_no)].append(error_type)
else:
to_ignore[(path, line_no)] = [error_type]
print(len(to_ignore))
for (error_path, line_no), error_types in to_ignore.items():
all_errors = ", ".join(error_types)
full_path = f"{cwd}/{error_path}"
try:
with open(full_path, "r") as f:
file_lines = f.readlines()
except FileNotFoundError:
continue
file_lines[int(line_no) - 1] = (
file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n"
)
with open(full_path, "w") as f:
f.write("".join(file_lines))
subprocess.run(
"poetry run ruff format .; poetry run ruff --select I --fix .",
cwd=cwd,
shell=True,
capture_output=True,
text=True,
)
if __name__ == "__main__":
main()
```
2024-07-03 17:33:27 +00:00
|
|
|
|
2023-09-21 06:44:17 +00:00
|
|
|
from typing import Any, Dict, List, Optional
|
2023-09-19 23:29:50 +00:00
|
|
|
|
2023-09-21 06:44:17 +00:00
|
|
|
from langchain.chains.base import Chain
|
2023-09-19 23:29:50 +00:00
|
|
|
from langchain.chains.llm import LLMChain
|
2024-01-02 20:09:45 +00:00
|
|
|
from langchain_core.language_models import BaseLanguageModel
|
2024-03-27 00:03:13 +00:00
|
|
|
from langchain_core.prompts import PromptTemplate
|
2023-09-19 23:29:50 +00:00
|
|
|
|
|
|
|
from langchain_experimental.synthetic_data.prompts import SENTENCE_PROMPT
|
|
|
|
|
|
|
|
|
|
|
|
def create_data_generation_chain(
|
|
|
|
llm: BaseLanguageModel,
|
|
|
|
prompt: Optional[PromptTemplate] = None,
|
|
|
|
) -> Chain:
|
2024-02-24 02:24:16 +00:00
|
|
|
"""Create a chain that generates synthetic sentences with
|
2023-09-19 23:29:50 +00:00
|
|
|
provided fields.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
llm: The language model to use.
|
|
|
|
prompt: Prompt to feed the language model with.
|
|
|
|
If not provided, the default one will be used.
|
|
|
|
"""
|
|
|
|
prompt = prompt or SENTENCE_PROMPT
|
|
|
|
return LLMChain(
|
|
|
|
llm=llm,
|
|
|
|
prompt=prompt,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class DatasetGenerator:
|
2024-02-24 02:24:16 +00:00
|
|
|
"""Generate synthetic dataset with a given language model."""
|
2023-09-19 23:29:50 +00:00
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
llm: BaseLanguageModel,
|
|
|
|
sentence_preferences: Optional[Dict[str, Any]] = None,
|
|
|
|
):
|
|
|
|
self.generator = create_data_generation_chain(llm)
|
|
|
|
self.sentence_preferences = sentence_preferences or {}
|
|
|
|
|
|
|
|
def __call__(self, fields_collection: List[List[Any]]) -> List[Dict[str, Any]]:
|
|
|
|
results: List[Dict[str, Any]] = []
|
|
|
|
for fields in fields_collection:
|
|
|
|
results.append(
|
|
|
|
self.generator(
|
|
|
|
{"fields": fields, "preferences": self.sentence_preferences}
|
|
|
|
)
|
|
|
|
)
|
|
|
|
return results
|