langchain/libs/experimental/langchain_experimental/synthetic_data/__init__.py

52 lines
1.5 KiB
Python
Raw Normal View History

"""Generate **synthetic data** using LLM and few-shot template."""
infra: update mypy 1.10, ruff 0.5 (#23721) ```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
2024-07-03 17:33:27 +00:00
2023-09-21 06:44:17 +00:00
from typing import Any, Dict, List, Optional
2023-09-21 06:44:17 +00:00
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain_core.language_models import BaseLanguageModel
from langchain_core.prompts import PromptTemplate
from langchain_experimental.synthetic_data.prompts import SENTENCE_PROMPT
def create_data_generation_chain(
llm: BaseLanguageModel,
prompt: Optional[PromptTemplate] = None,
) -> Chain:
"""Create a chain that generates synthetic sentences with
provided fields.
Args:
llm: The language model to use.
prompt: Prompt to feed the language model with.
If not provided, the default one will be used.
"""
prompt = prompt or SENTENCE_PROMPT
return LLMChain(
llm=llm,
prompt=prompt,
)
class DatasetGenerator:
"""Generate synthetic dataset with a given language model."""
def __init__(
self,
llm: BaseLanguageModel,
sentence_preferences: Optional[Dict[str, Any]] = None,
):
self.generator = create_data_generation_chain(llm)
self.sentence_preferences = sentence_preferences or {}
def __call__(self, fields_collection: List[List[Any]]) -> List[Dict[str, Any]]:
results: List[Dict[str, Any]] = []
for fields in fields_collection:
results.append(
self.generator(
{"fields": fields, "preferences": self.sentence_preferences}
)
)
return results