mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
43 lines
972 B
Markdown
43 lines
972 B
Markdown
|
# langchain-couchbase
|
||
|
|
||
|
This package contains the LangChain integration with Couchbase
|
||
|
|
||
|
## Installation
|
||
|
|
||
|
```bash
|
||
|
pip install -U langchain-couchbase
|
||
|
```
|
||
|
|
||
|
## Usage
|
||
|
|
||
|
The `CouchbaseVectorStore` class exposes the connection to the Couchbase vector store.
|
||
|
|
||
|
```python
|
||
|
from langchain_couchbase.vectorstores import CouchbaseVectorStore
|
||
|
|
||
|
from couchbase.cluster import Cluster
|
||
|
from couchbase.auth import PasswordAuthenticator
|
||
|
from couchbase.options import ClusterOptions
|
||
|
from datetime import timedelta
|
||
|
|
||
|
auth = PasswordAuthenticator(username, password)
|
||
|
options = ClusterOptions(auth)
|
||
|
connect_string = "couchbases://localhost"
|
||
|
cluster = Cluster(connect_string, options)
|
||
|
|
||
|
# Wait until the cluster is ready for use.
|
||
|
cluster.wait_until_ready(timedelta(seconds=5))
|
||
|
|
||
|
embeddings = OpenAIEmbeddings()
|
||
|
|
||
|
vectorstore = CouchbaseVectorStore(
|
||
|
cluster=cluster,
|
||
|
bucket_name="",
|
||
|
scope_name="",
|
||
|
collection_name="",
|
||
|
embedding=embeddings,
|
||
|
index_name="vector-search-index",
|
||
|
)
|
||
|
|
||
|
```
|