2023-10-26 01:47:42 +00:00
|
|
|
from langchain.chat_models import ChatOpenAI
|
|
|
|
from langchain.embeddings import OpenAIEmbeddings
|
2023-10-27 02:44:30 +00:00
|
|
|
from langchain.prompts import ChatPromptTemplate
|
2023-10-29 05:13:22 +00:00
|
|
|
from langchain.pydantic_v1 import BaseModel
|
2023-10-26 01:47:42 +00:00
|
|
|
from langchain.schema.output_parser import StrOutputParser
|
2023-10-27 02:44:30 +00:00
|
|
|
from langchain.schema.runnable import RunnableParallel, RunnablePassthrough
|
2023-10-26 01:47:42 +00:00
|
|
|
from langchain.vectorstores import Neo4jVector
|
|
|
|
|
|
|
|
retrieval_query = """
|
|
|
|
MATCH (node)-[:HAS_PARENT]->(parent)
|
|
|
|
RETURN parent.text AS text, score, {} AS metadata
|
|
|
|
"""
|
|
|
|
|
|
|
|
vectorstore = Neo4jVector.from_existing_index(
|
|
|
|
OpenAIEmbeddings(),
|
|
|
|
index_name="retrieval",
|
|
|
|
node_label="Child",
|
|
|
|
embedding_node_property="embedding",
|
|
|
|
retrieval_query=retrieval_query
|
|
|
|
|
|
|
|
)
|
|
|
|
retriever = vectorstore.as_retriever()
|
|
|
|
|
|
|
|
template = """Answer the question based only on the following context:
|
|
|
|
{context}
|
|
|
|
|
|
|
|
Question: {question}
|
|
|
|
"""
|
|
|
|
prompt = ChatPromptTemplate.from_template(template)
|
|
|
|
|
|
|
|
model = ChatOpenAI()
|
|
|
|
|
|
|
|
chain = (
|
|
|
|
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
|
|
|
|
| prompt
|
|
|
|
| model
|
|
|
|
| StrOutputParser()
|
2023-10-29 05:13:22 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
# Add typing for input
|
|
|
|
class Question(BaseModel):
|
|
|
|
__root__: str
|
|
|
|
|
|
|
|
chain = chain.with_types(input_type=Question)
|