mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
156 lines
4.8 KiB
Python
156 lines
4.8 KiB
Python
|
from __future__ import annotations
|
||
|
|
||
|
import logging
|
||
|
from typing import (
|
||
|
Any,
|
||
|
Callable,
|
||
|
Dict,
|
||
|
List,
|
||
|
Optional,
|
||
|
)
|
||
|
|
||
|
from langchain_core.embeddings import Embeddings
|
||
|
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
|
||
|
from langchain_core.utils import get_from_dict_or_env
|
||
|
from requests.exceptions import HTTPError
|
||
|
from tenacity import (
|
||
|
before_sleep_log,
|
||
|
retry,
|
||
|
retry_if_exception_type,
|
||
|
stop_after_attempt,
|
||
|
wait_exponential,
|
||
|
)
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
def _create_retry_decorator(embeddings: DashScopeEmbeddings) -> Callable[[Any], Any]:
|
||
|
multiplier = 1
|
||
|
min_seconds = 1
|
||
|
max_seconds = 4
|
||
|
# Wait 2^x * 1 second between each retry starting with
|
||
|
# 1 seconds, then up to 4 seconds, then 4 seconds afterwards
|
||
|
return retry(
|
||
|
reraise=True,
|
||
|
stop=stop_after_attempt(embeddings.max_retries),
|
||
|
wait=wait_exponential(multiplier, min=min_seconds, max=max_seconds),
|
||
|
retry=(retry_if_exception_type(HTTPError)),
|
||
|
before_sleep=before_sleep_log(logger, logging.WARNING),
|
||
|
)
|
||
|
|
||
|
|
||
|
def embed_with_retry(embeddings: DashScopeEmbeddings, **kwargs: Any) -> Any:
|
||
|
"""Use tenacity to retry the embedding call."""
|
||
|
retry_decorator = _create_retry_decorator(embeddings)
|
||
|
|
||
|
@retry_decorator
|
||
|
def _embed_with_retry(**kwargs: Any) -> Any:
|
||
|
resp = embeddings.client.call(**kwargs)
|
||
|
if resp.status_code == 200:
|
||
|
return resp.output["embeddings"]
|
||
|
elif resp.status_code in [400, 401]:
|
||
|
raise ValueError(
|
||
|
f"status_code: {resp.status_code} \n "
|
||
|
f"code: {resp.code} \n message: {resp.message}"
|
||
|
)
|
||
|
else:
|
||
|
raise HTTPError(
|
||
|
f"HTTP error occurred: status_code: {resp.status_code} \n "
|
||
|
f"code: {resp.code} \n message: {resp.message}",
|
||
|
response=resp,
|
||
|
)
|
||
|
|
||
|
return _embed_with_retry(**kwargs)
|
||
|
|
||
|
|
||
|
class DashScopeEmbeddings(BaseModel, Embeddings):
|
||
|
"""DashScope embedding models.
|
||
|
|
||
|
To use, you should have the ``dashscope`` python package installed, and the
|
||
|
environment variable ``DASHSCOPE_API_KEY`` set with your API key or pass it
|
||
|
as a named parameter to the constructor.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.embeddings import DashScopeEmbeddings
|
||
|
embeddings = DashScopeEmbeddings(dashscope_api_key="my-api-key")
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
import os
|
||
|
os.environ["DASHSCOPE_API_KEY"] = "your DashScope API KEY"
|
||
|
|
||
|
from langchain_community.embeddings.dashscope import DashScopeEmbeddings
|
||
|
embeddings = DashScopeEmbeddings(
|
||
|
model="text-embedding-v1",
|
||
|
)
|
||
|
text = "This is a test query."
|
||
|
query_result = embeddings.embed_query(text)
|
||
|
|
||
|
"""
|
||
|
|
||
|
client: Any #: :meta private:
|
||
|
"""The DashScope client."""
|
||
|
model: str = "text-embedding-v1"
|
||
|
dashscope_api_key: Optional[str] = None
|
||
|
max_retries: int = 5
|
||
|
"""Maximum number of retries to make when generating."""
|
||
|
|
||
|
class Config:
|
||
|
"""Configuration for this pydantic object."""
|
||
|
|
||
|
extra = Extra.forbid
|
||
|
|
||
|
@root_validator()
|
||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||
|
import dashscope
|
||
|
|
||
|
"""Validate that api key and python package exists in environment."""
|
||
|
values["dashscope_api_key"] = get_from_dict_or_env(
|
||
|
values, "dashscope_api_key", "DASHSCOPE_API_KEY"
|
||
|
)
|
||
|
dashscope.api_key = values["dashscope_api_key"]
|
||
|
try:
|
||
|
import dashscope
|
||
|
|
||
|
values["client"] = dashscope.TextEmbedding
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Could not import dashscope python package. "
|
||
|
"Please install it with `pip install dashscope`."
|
||
|
)
|
||
|
return values
|
||
|
|
||
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||
|
"""Call out to DashScope's embedding endpoint for embedding search docs.
|
||
|
|
||
|
Args:
|
||
|
texts: The list of texts to embed.
|
||
|
chunk_size: The chunk size of embeddings. If None, will use the chunk size
|
||
|
specified by the class.
|
||
|
|
||
|
Returns:
|
||
|
List of embeddings, one for each text.
|
||
|
"""
|
||
|
embeddings = embed_with_retry(
|
||
|
self, input=texts, text_type="document", model=self.model
|
||
|
)
|
||
|
embedding_list = [item["embedding"] for item in embeddings]
|
||
|
return embedding_list
|
||
|
|
||
|
def embed_query(self, text: str) -> List[float]:
|
||
|
"""Call out to DashScope's embedding endpoint for embedding query text.
|
||
|
|
||
|
Args:
|
||
|
text: The text to embed.
|
||
|
|
||
|
Returns:
|
||
|
Embedding for the text.
|
||
|
"""
|
||
|
embedding = embed_with_retry(
|
||
|
self, input=text, text_type="query", model=self.model
|
||
|
)[0]["embedding"]
|
||
|
return embedding
|