langchain/templates/rag-aws-bedrock/rag_aws_bedrock/chain.py

56 lines
1.4 KiB
Python
Raw Normal View History

2023-10-27 20:15:54 +00:00
import os
from langchain.embeddings import BedrockEmbeddings
from langchain.llms.bedrock import Bedrock
from langchain.prompts import ChatPromptTemplate
from langchain.vectorstores import FAISS
docs[patch], templates[patch]: Import from core (#14575) Update imports to use core for the low-hanging fruit changes. Ran following ```bash git grep -l 'langchain.schema.runnable' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.runnable/langchain_core.runnables/g' git grep -l 'langchain.schema.output_parser' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.output_parser/langchain_core.output_parsers/g' git grep -l 'langchain.schema.messages' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.messages/langchain_core.messages/g' git grep -l 'langchain.schema.chat_histry' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.chat_history/langchain_core.chat_history/g' git grep -l 'langchain.schema.prompt_template' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.prompt_template/langchain_core.prompts/g' git grep -l 'from langchain.pydantic_v1' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.pydantic_v1/from langchain_core.pydantic_v1/g' git grep -l 'from langchain.tools.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.tools\.base/from langchain_core.tools/g' git grep -l 'from langchain.chat_models.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.chat_models.base/from langchain_core.language_models.chat_models/g' git grep -l 'from langchain.llms.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.llms\.base\ /from langchain_core.language_models.llms\ /g' git grep -l 'from langchain.embeddings.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.embeddings\.base/from langchain_core.embeddings/g' git grep -l 'from langchain.vectorstores.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.vectorstores\.base/from langchain_core.vectorstores/g' git grep -l 'from langchain.agents.tools' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.agents\.tools/from langchain_core.tools/g' git grep -l 'from langchain.schema.output' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.output\ /from langchain_core.outputs\ /g' git grep -l 'from langchain.schema.embeddings' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.embeddings/from langchain_core.embeddings/g' git grep -l 'from langchain.schema.document' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.document/from langchain_core.documents/g' git grep -l 'from langchain.schema.agent' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.agent/from langchain_core.agents/g' git grep -l 'from langchain.schema.prompt ' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.prompt\ /from langchain_core.prompt_values /g' git grep -l 'from langchain.schema.language_model' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.language_model/from langchain_core.language_models/g' ```
2023-12-12 00:49:10 +00:00
from langchain_core.output_parsers import StrOutputParser
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
2023-10-27 20:15:54 +00:00
# Get region and profile from env
region = os.environ.get("AWS_DEFAULT_REGION", "us-east-1")
profile = os.environ.get("AWS_PROFILE", "default")
2023-10-27 20:15:54 +00:00
# Set LLM and embeddings
model = Bedrock(
model_id="anthropic.claude-v2",
region_name=region,
credentials_profile_name=profile,
2023-10-29 22:50:09 +00:00
model_kwargs={"max_tokens_to_sample": 200},
2023-10-27 20:15:54 +00:00
)
2023-10-29 22:50:09 +00:00
bedrock_embeddings = BedrockEmbeddings(model_id="amazon.titan-embed-text-v1")
2023-10-27 20:15:54 +00:00
# Add to vectorDB
vectorstore = FAISS.from_texts(
2023-10-29 22:50:09 +00:00
["harrison worked at kensho"], embedding=bedrock_embeddings
)
retriever = vectorstore.as_retriever()
# Get retriever from vectorstore
2023-10-27 20:15:54 +00:00
retriever = vectorstore.as_retriever()
# RAG prompt
template = """Answer the question based only on the following context:
{context}
Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
2023-10-27 20:15:54 +00:00
# RAG
chain = (
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
| prompt
| model
| StrOutputParser()
)
2023-10-29 22:50:09 +00:00
# Add typing for input
class Question(BaseModel):
__root__: str
2023-10-29 22:50:09 +00:00
chain = chain.with_types(input_type=Question)