2023-11-07 19:05:28 +00:00
|
|
|
from typing import Any, Dict, List
|
|
|
|
|
|
|
|
from langchain.chains.graph_qa.cypher_utils import CypherQueryCorrector, Schema
|
|
|
|
from langchain.chat_models import ChatOpenAI
|
|
|
|
from langchain.graphs import Neo4jGraph
|
|
|
|
from langchain.memory import ChatMessageHistory
|
|
|
|
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
docs[patch], templates[patch]: Import from core (#14575)
Update imports to use core for the low-hanging fruit changes. Ran
following
```bash
git grep -l 'langchain.schema.runnable' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.runnable/langchain_core.runnables/g'
git grep -l 'langchain.schema.output_parser' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.output_parser/langchain_core.output_parsers/g'
git grep -l 'langchain.schema.messages' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.messages/langchain_core.messages/g'
git grep -l 'langchain.schema.chat_histry' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.chat_history/langchain_core.chat_history/g'
git grep -l 'langchain.schema.prompt_template' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.prompt_template/langchain_core.prompts/g'
git grep -l 'from langchain.pydantic_v1' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.pydantic_v1/from langchain_core.pydantic_v1/g'
git grep -l 'from langchain.tools.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.tools\.base/from langchain_core.tools/g'
git grep -l 'from langchain.chat_models.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.chat_models.base/from langchain_core.language_models.chat_models/g'
git grep -l 'from langchain.llms.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.llms\.base\ /from langchain_core.language_models.llms\ /g'
git grep -l 'from langchain.embeddings.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.embeddings\.base/from langchain_core.embeddings/g'
git grep -l 'from langchain.vectorstores.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.vectorstores\.base/from langchain_core.vectorstores/g'
git grep -l 'from langchain.agents.tools' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.agents\.tools/from langchain_core.tools/g'
git grep -l 'from langchain.schema.output' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.output\ /from langchain_core.outputs\ /g'
git grep -l 'from langchain.schema.embeddings' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.embeddings/from langchain_core.embeddings/g'
git grep -l 'from langchain.schema.document' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.document/from langchain_core.documents/g'
git grep -l 'from langchain.schema.agent' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.agent/from langchain_core.agents/g'
git grep -l 'from langchain.schema.prompt ' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.prompt\ /from langchain_core.prompt_values /g'
git grep -l 'from langchain.schema.language_model' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.language_model/from langchain_core.language_models/g'
```
2023-12-12 00:49:10 +00:00
|
|
|
from langchain_core.output_parsers import StrOutputParser
|
|
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
|
|
from langchain_core.runnables import RunnablePassthrough
|
2023-11-07 19:05:28 +00:00
|
|
|
|
|
|
|
# Connection to Neo4j
|
|
|
|
graph = Neo4jGraph()
|
|
|
|
|
|
|
|
# Cypher validation tool for relationship directions
|
|
|
|
corrector_schema = [
|
|
|
|
Schema(el["start"], el["type"], el["end"])
|
|
|
|
for el in graph.structured_schema.get("relationships")
|
|
|
|
]
|
|
|
|
cypher_validation = CypherQueryCorrector(corrector_schema)
|
|
|
|
|
|
|
|
# LLMs
|
|
|
|
cypher_llm = ChatOpenAI(model_name="gpt-4", temperature=0.0)
|
|
|
|
qa_llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0.0)
|
|
|
|
|
|
|
|
|
|
|
|
def convert_messages(input: List[Dict[str, Any]]) -> ChatMessageHistory:
|
|
|
|
history = ChatMessageHistory()
|
|
|
|
for item in input:
|
|
|
|
history.add_user_message(item["result"]["question"])
|
|
|
|
history.add_ai_message(item["result"]["answer"])
|
|
|
|
return history
|
|
|
|
|
|
|
|
|
|
|
|
def get_history(input: Dict[str, Any]) -> ChatMessageHistory:
|
|
|
|
input.pop("question")
|
|
|
|
# Lookback conversation window
|
|
|
|
window = 3
|
|
|
|
data = graph.query(
|
|
|
|
"""
|
|
|
|
MATCH (u:User {id:$user_id})-[:HAS_SESSION]->(s:Session {id:$session_id}),
|
|
|
|
(s)-[:LAST_MESSAGE]->(last_message)
|
|
|
|
MATCH p=(last_message)<-[:NEXT*0.."""
|
|
|
|
+ str(window)
|
|
|
|
+ """]-()
|
|
|
|
WITH p, length(p) AS length
|
|
|
|
ORDER BY length DESC LIMIT 1
|
|
|
|
UNWIND reverse(nodes(p)) AS node
|
|
|
|
MATCH (node)-[:HAS_ANSWER]->(answer)
|
|
|
|
RETURN {question:node.text, answer:answer.text} AS result
|
|
|
|
""",
|
|
|
|
params=input,
|
|
|
|
)
|
|
|
|
history = convert_messages(data)
|
|
|
|
return history.messages
|
|
|
|
|
|
|
|
|
|
|
|
def save_history(input):
|
|
|
|
input.pop("response")
|
|
|
|
# store history to database
|
|
|
|
graph.query(
|
|
|
|
"""MERGE (u:User {id: $user_id})
|
|
|
|
WITH u
|
|
|
|
OPTIONAL MATCH (u)-[:HAS_SESSION]->(s:Session{id: $session_id}),
|
|
|
|
(s)-[l:LAST_MESSAGE]->(last_message)
|
|
|
|
FOREACH (_ IN CASE WHEN last_message IS NULL THEN [1] ELSE [] END |
|
|
|
|
CREATE (u)-[:HAS_SESSION]->(s1:Session {id:$session_id}),
|
|
|
|
(s1)-[:LAST_MESSAGE]->(q:Question {text:$question, cypher:$query, date:datetime()}),
|
|
|
|
(q)-[:HAS_ANSWER]->(:Answer {text:$output}))
|
|
|
|
FOREACH (_ IN CASE WHEN last_message IS NOT NULL THEN [1] ELSE [] END |
|
|
|
|
CREATE (last_message)-[:NEXT]->(q:Question
|
|
|
|
{text:$question, cypher:$query, date:datetime()}),
|
|
|
|
(q)-[:HAS_ANSWER]->(:Answer {text:$output}),
|
|
|
|
(s)-[:LAST_MESSAGE]->(q)
|
|
|
|
DELETE l) """,
|
|
|
|
params=input,
|
|
|
|
)
|
|
|
|
|
|
|
|
# Return LLM response to the chain
|
|
|
|
return input["output"]
|
|
|
|
|
|
|
|
|
|
|
|
# Generate Cypher statement based on natural language input
|
|
|
|
cypher_template = """This is important for my career.
|
|
|
|
Based on the Neo4j graph schema below, write a Cypher query that would answer the user's question:
|
|
|
|
{schema}
|
|
|
|
|
|
|
|
Question: {question}
|
|
|
|
Cypher query:""" # noqa: E501
|
|
|
|
|
|
|
|
cypher_prompt = ChatPromptTemplate.from_messages(
|
|
|
|
[
|
|
|
|
(
|
|
|
|
"system",
|
|
|
|
"Given an input question, convert it to a Cypher query. No pre-amble.",
|
|
|
|
),
|
|
|
|
MessagesPlaceholder(variable_name="history"),
|
|
|
|
("human", cypher_template),
|
|
|
|
]
|
|
|
|
)
|
|
|
|
|
|
|
|
cypher_response = (
|
|
|
|
RunnablePassthrough.assign(schema=lambda _: graph.get_schema, history=get_history)
|
|
|
|
| cypher_prompt
|
|
|
|
| cypher_llm.bind(stop=["\nCypherResult:"])
|
|
|
|
| StrOutputParser()
|
|
|
|
)
|
|
|
|
|
|
|
|
# Generate natural language response based on database results
|
|
|
|
response_template = """Based on the the question, Cypher query, and Cypher response, write a natural language response:
|
|
|
|
Question: {question}
|
|
|
|
Cypher query: {query}
|
|
|
|
Cypher Response: {response}""" # noqa: E501
|
|
|
|
|
|
|
|
response_prompt = ChatPromptTemplate.from_messages(
|
|
|
|
[
|
|
|
|
(
|
|
|
|
"system",
|
|
|
|
"Given an input question and Cypher response, convert it to a "
|
|
|
|
"natural language answer. No pre-amble.",
|
|
|
|
),
|
|
|
|
("human", response_template),
|
|
|
|
]
|
|
|
|
)
|
|
|
|
|
|
|
|
chain = (
|
|
|
|
RunnablePassthrough.assign(query=cypher_response)
|
|
|
|
| RunnablePassthrough.assign(
|
|
|
|
response=lambda x: graph.query(cypher_validation(x["query"])),
|
|
|
|
)
|
|
|
|
| RunnablePassthrough.assign(
|
|
|
|
output=response_prompt | qa_llm | StrOutputParser(),
|
|
|
|
)
|
|
|
|
| save_history
|
|
|
|
)
|
|
|
|
|
|
|
|
# Add typing for input
|
|
|
|
|
|
|
|
|
|
|
|
class Question(BaseModel):
|
|
|
|
question: str
|
|
|
|
user_id: str
|
|
|
|
session_id: str
|
|
|
|
|
|
|
|
|
|
|
|
chain = chain.with_types(input_type=Question)
|