langchain/libs/community/langchain_community/chat_models/edenai.py

373 lines
13 KiB
Python
Raw Normal View History

import json
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional
from aiohttp import ClientSession
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import (
BaseChatModel,
agenerate_from_stream,
generate_from_stream,
)
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import Extra, Field, SecretStr, root_validator
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
from langchain_community.utilities.requests import Requests
def _message_role(type: str) -> str:
role_mapping = {"ai": "assistant", "human": "user", "chat": "user"}
if type in role_mapping:
return role_mapping[type]
else:
raise ValueError(f"Unknown type: {type}")
def _format_edenai_messages(messages: List[BaseMessage]) -> Dict[str, Any]:
system = None
formatted_messages = []
text = messages[-1].content
for i, message in enumerate(messages[:-1]):
if message.type == "system":
if i != 0:
raise ValueError("System message must be at beginning of message list.")
system = message.content
else:
formatted_messages.append(
{
"role": _message_role(message.type),
"message": message.content,
}
)
return {
"text": text,
"previous_history": formatted_messages,
"chatbot_global_action": system,
}
class ChatEdenAI(BaseChatModel):
"""`EdenAI` chat large language models.
`EdenAI` is a versatile platform that allows you to access various language models
from different providers such as Google, OpenAI, Cohere, Mistral and more.
To get started, make sure you have the environment variable ``EDENAI_API_KEY``
set with your API key, or pass it as a named parameter to the constructor.
Additionally, `EdenAI` provides the flexibility to choose from a variety of models,
including the ones like "gpt-4".
Example:
.. code-block:: python
from langchain_community.chat_models import ChatEdenAI
from langchain_core.messages import HumanMessage
# Initialize `ChatEdenAI` with the desired configuration
chat = ChatEdenAI(
provider="openai",
model="gpt-4",
max_tokens=256,
temperature=0.75)
# Create a list of messages to interact with the model
messages = [HumanMessage(content="hello")]
# Invoke the model with the provided messages
chat.invoke(messages)
`EdenAI` goes beyond mere model invocation. It empowers you with advanced features :
- **Multiple Providers**: access to a diverse range of llms offered by various
providers giving you the freedom to choose the best-suited model for your use case.
- **Fallback Mechanism**: Set a fallback mechanism to ensure seamless operations
even if the primary provider is unavailable, you can easily switches to an
alternative provider.
- **Usage Statistics**: Track usage statistics on a per-project
and per-API key basis.
This feature allows you to monitor and manage resource consumption effectively.
- **Monitoring and Observability**: `EdenAI` provides comprehensive monitoring
and observability tools on the platform.
Example of setting up a fallback mechanism:
.. code-block:: python
# Initialize `ChatEdenAI` with a fallback provider
chat_with_fallback = ChatEdenAI(
provider="openai",
model="gpt-4",
max_tokens=256,
temperature=0.75,
fallback_provider="google")
you can find more details here : https://docs.edenai.co/reference/text_chat_create
"""
provider: str = "openai"
"""chat provider to use (eg: openai,google etc.)"""
model: Optional[str] = None
"""
model name for above provider (eg: 'gpt-4' for openai)
available models are shown on https://docs.edenai.co/ under 'available providers'
"""
max_tokens: int = 256
"""Denotes the number of tokens to predict per generation."""
temperature: Optional[float] = 0
"""A non-negative float that tunes the degree of randomness in generation."""
streaming: bool = False
"""Whether to stream the results."""
fallback_providers: Optional[str] = None
"""Providers in this will be used as fallback if the call to provider fails."""
edenai_api_url: str = "https://api.edenai.run/v2"
edenai_api_key: Optional[SecretStr] = Field(None, description="EdenAI API Token")
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key exists in environment."""
values["edenai_api_key"] = convert_to_secret_str(
get_from_dict_or_env(values, "edenai_api_key", "EDENAI_API_KEY")
)
return values
@staticmethod
def get_user_agent() -> str:
from langchain_community import __version__
return f"langchain/{__version__}"
@property
def _llm_type(self) -> str:
"""Return type of chat model."""
return "edenai-chat"
@property
def _api_key(self) -> str:
if self.edenai_api_key:
return self.edenai_api_key.get_secret_value()
return ""
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
"""Call out to EdenAI's chat endpoint."""
url = f"{self.edenai_api_url}/text/chat/stream"
headers = {
"Authorization": f"Bearer {self._api_key}",
"User-Agent": self.get_user_agent(),
}
formatted_data = _format_edenai_messages(messages=messages)
payload: Dict[str, Any] = {
"providers": self.provider,
"max_tokens": self.max_tokens,
"temperature": self.temperature,
"fallback_providers": self.fallback_providers,
**formatted_data,
**kwargs,
}
payload = {k: v for k, v in payload.items() if v is not None}
if self.model is not None:
payload["settings"] = {self.provider: self.model}
request = Requests(headers=headers)
response = request.post(url=url, data=payload, stream=True)
response.raise_for_status()
for chunk_response in response.iter_lines():
chunk = json.loads(chunk_response.decode())
token = chunk["text"]
cg_chunk = ChatGenerationChunk(message=AIMessageChunk(content=token))
if run_manager:
run_manager.on_llm_new_token(token, chunk=cg_chunk)
yield cg_chunk
async def _astream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[ChatGenerationChunk]:
url = f"{self.edenai_api_url}/text/chat/stream"
headers = {
"Authorization": f"Bearer {self._api_key}",
"User-Agent": self.get_user_agent(),
}
formatted_data = _format_edenai_messages(messages=messages)
payload: Dict[str, Any] = {
"providers": self.provider,
"max_tokens": self.max_tokens,
"temperature": self.temperature,
"fallback_providers": self.fallback_providers,
**formatted_data,
**kwargs,
}
payload = {k: v for k, v in payload.items() if v is not None}
if self.model is not None:
payload["settings"] = {self.provider: self.model}
async with ClientSession() as session:
async with session.post(url, json=payload, headers=headers) as response:
response.raise_for_status()
async for chunk_response in response.content:
chunk = json.loads(chunk_response.decode())
token = chunk["text"]
cg_chunk = ChatGenerationChunk(
message=AIMessageChunk(content=token)
)
if run_manager:
await run_manager.on_llm_new_token(
token=chunk["text"], chunk=cg_chunk
)
yield cg_chunk
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
"""Call out to EdenAI's chat endpoint."""
if self.streaming:
stream_iter = self._stream(
messages, stop=stop, run_manager=run_manager, **kwargs
)
return generate_from_stream(stream_iter)
url = f"{self.edenai_api_url}/text/chat"
headers = {
"Authorization": f"Bearer {self._api_key}",
"User-Agent": self.get_user_agent(),
}
formatted_data = _format_edenai_messages(messages=messages)
payload: Dict[str, Any] = {
"providers": self.provider,
"max_tokens": self.max_tokens,
"temperature": self.temperature,
"fallback_providers": self.fallback_providers,
**formatted_data,
**kwargs,
}
payload = {k: v for k, v in payload.items() if v is not None}
if self.model is not None:
payload["settings"] = {self.provider: self.model}
request = Requests(headers=headers)
response = request.post(url=url, data=payload)
response.raise_for_status()
data = response.json()
provider_response = data[self.provider]
if self.fallback_providers:
fallback_response = data.get(self.fallback_providers)
if fallback_response:
provider_response = fallback_response
if provider_response.get("status") == "fail":
err_msg = provider_response.get("error", {}).get("message")
raise Exception(err_msg)
return ChatResult(
generations=[
ChatGeneration(
message=AIMessage(content=provider_response["generated_text"])
)
],
llm_output=data,
)
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
if self.streaming:
stream_iter = self._astream(
messages, stop=stop, run_manager=run_manager, **kwargs
)
return await agenerate_from_stream(stream_iter)
url = f"{self.edenai_api_url}/text/chat"
headers = {
"Authorization": f"Bearer {self._api_key}",
"User-Agent": self.get_user_agent(),
}
formatted_data = _format_edenai_messages(messages=messages)
payload: Dict[str, Any] = {
"providers": self.provider,
"max_tokens": self.max_tokens,
"temperature": self.temperature,
"fallback_providers": self.fallback_providers,
**formatted_data,
**kwargs,
}
payload = {k: v for k, v in payload.items() if v is not None}
if self.model is not None:
payload["settings"] = {self.provider: self.model}
async with ClientSession() as session:
async with session.post(url, json=payload, headers=headers) as response:
response.raise_for_status()
data = await response.json()
provider_response = data[self.provider]
if self.fallback_providers:
fallback_response = data.get(self.fallback_providers)
if fallback_response:
provider_response = fallback_response
if provider_response.get("status") == "fail":
err_msg = provider_response.get("error", {}).get("message")
raise Exception(err_msg)
return ChatResult(
generations=[
ChatGeneration(
message=AIMessage(
content=provider_response["generated_text"]
)
)
],
llm_output=data,
)