2024-01-05 23:03:28 +00:00
|
|
|
"""Test AzureOpenAI wrapper."""
|
|
|
|
import os
|
|
|
|
from typing import Any, Generator
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
from langchain_core.callbacks import CallbackManager
|
|
|
|
from langchain_core.outputs import LLMResult
|
|
|
|
|
|
|
|
from langchain_openai import AzureOpenAI
|
|
|
|
from tests.unit_tests.fake.callbacks import FakeCallbackHandler
|
|
|
|
|
|
|
|
OPENAI_API_VERSION = os.environ.get("AZURE_OPENAI_API_VERSION", "")
|
|
|
|
OPENAI_API_BASE = os.environ.get("AZURE_OPENAI_API_BASE", "")
|
|
|
|
OPENAI_API_KEY = os.environ.get("AZURE_OPENAI_API_KEY", "")
|
|
|
|
DEPLOYMENT_NAME = os.environ.get(
|
|
|
|
"AZURE_OPENAI_DEPLOYMENT_NAME",
|
|
|
|
os.environ.get("AZURE_OPENAI_LLM_DEPLOYMENT_NAME", ""),
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def _get_llm(**kwargs: Any) -> AzureOpenAI:
|
|
|
|
return AzureOpenAI(
|
|
|
|
deployment_name=DEPLOYMENT_NAME,
|
|
|
|
openai_api_version=OPENAI_API_VERSION,
|
2024-01-30 23:49:56 +00:00
|
|
|
azure_endpoint=OPENAI_API_BASE,
|
2024-01-05 23:03:28 +00:00
|
|
|
openai_api_key=OPENAI_API_KEY,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture
|
|
|
|
def llm() -> AzureOpenAI:
|
2024-06-19 18:39:58 +00:00
|
|
|
return _get_llm(max_tokens=10)
|
2024-01-05 23:03:28 +00:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
|
|
def test_openai_call(llm: AzureOpenAI) -> None:
|
|
|
|
"""Test valid call to openai."""
|
2024-04-24 23:39:23 +00:00
|
|
|
output = llm.invoke("Say something nice:")
|
2024-01-05 23:03:28 +00:00
|
|
|
assert isinstance(output, str)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
|
|
def test_openai_streaming(llm: AzureOpenAI) -> None:
|
|
|
|
"""Test streaming tokens from AzureOpenAI."""
|
|
|
|
generator = llm.stream("I'm Pickle Rick")
|
|
|
|
|
|
|
|
assert isinstance(generator, Generator)
|
|
|
|
|
|
|
|
full_response = ""
|
|
|
|
for token in generator:
|
|
|
|
assert isinstance(token, str)
|
|
|
|
full_response += token
|
|
|
|
assert full_response
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
|
|
async def test_openai_astream(llm: AzureOpenAI) -> None:
|
|
|
|
"""Test streaming tokens from AzureOpenAI."""
|
|
|
|
async for token in llm.astream("I'm Pickle Rick"):
|
|
|
|
assert isinstance(token, str)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
|
|
async def test_openai_abatch(llm: AzureOpenAI) -> None:
|
|
|
|
"""Test streaming tokens from AzureOpenAI."""
|
|
|
|
result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"])
|
|
|
|
for token in result:
|
|
|
|
assert isinstance(token, str)
|
|
|
|
|
|
|
|
|
|
|
|
async def test_openai_abatch_tags(llm: AzureOpenAI) -> None:
|
|
|
|
"""Test streaming tokens from AzureOpenAI."""
|
|
|
|
result = await llm.abatch(
|
|
|
|
["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]}
|
|
|
|
)
|
|
|
|
for token in result:
|
|
|
|
assert isinstance(token, str)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
|
|
def test_openai_batch(llm: AzureOpenAI) -> None:
|
|
|
|
"""Test streaming tokens from AzureOpenAI."""
|
|
|
|
result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"])
|
|
|
|
for token in result:
|
|
|
|
assert isinstance(token, str)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
|
|
async def test_openai_ainvoke(llm: AzureOpenAI) -> None:
|
|
|
|
"""Test streaming tokens from AzureOpenAI."""
|
|
|
|
result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]})
|
|
|
|
assert isinstance(result, str)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
|
|
def test_openai_invoke(llm: AzureOpenAI) -> None:
|
|
|
|
"""Test streaming tokens from AzureOpenAI."""
|
|
|
|
result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
|
|
|
|
assert isinstance(result, str)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
|
|
def test_openai_multiple_prompts(llm: AzureOpenAI) -> None:
|
|
|
|
"""Test completion with multiple prompts."""
|
|
|
|
output = llm.generate(["I'm Pickle Rick", "I'm Pickle Rick"])
|
|
|
|
assert isinstance(output, LLMResult)
|
|
|
|
assert isinstance(output.generations, list)
|
|
|
|
assert len(output.generations) == 2
|
|
|
|
|
|
|
|
|
|
|
|
def test_openai_streaming_best_of_error() -> None:
|
|
|
|
"""Test validation for streaming fails if best_of is not 1."""
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
_get_llm(best_of=2, streaming=True)
|
|
|
|
|
|
|
|
|
|
|
|
def test_openai_streaming_n_error() -> None:
|
|
|
|
"""Test validation for streaming fails if n is not 1."""
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
_get_llm(n=2, streaming=True)
|
|
|
|
|
|
|
|
|
|
|
|
def test_openai_streaming_multiple_prompts_error() -> None:
|
|
|
|
"""Test validation for streaming fails if multiple prompts are given."""
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
_get_llm(streaming=True).generate(["I'm Pickle Rick", "I'm Pickle Rick"])
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
|
|
def test_openai_streaming_call() -> None:
|
|
|
|
"""Test valid call to openai."""
|
|
|
|
llm = _get_llm(max_tokens=10, streaming=True)
|
2024-04-24 23:39:23 +00:00
|
|
|
output = llm.invoke("Say foo:")
|
2024-01-05 23:03:28 +00:00
|
|
|
assert isinstance(output, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_openai_streaming_callback() -> None:
|
|
|
|
"""Test that streaming correctly invokes on_llm_new_token callback."""
|
|
|
|
callback_handler = FakeCallbackHandler()
|
|
|
|
callback_manager = CallbackManager([callback_handler])
|
|
|
|
llm = _get_llm(
|
|
|
|
max_tokens=10,
|
|
|
|
streaming=True,
|
|
|
|
temperature=0,
|
|
|
|
callback_manager=callback_manager,
|
|
|
|
verbose=True,
|
|
|
|
)
|
2024-04-24 23:39:23 +00:00
|
|
|
llm.invoke("Write me a sentence with 100 words.")
|
2024-01-05 23:03:28 +00:00
|
|
|
assert callback_handler.llm_streams == 11
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
|
|
async def test_openai_async_generate() -> None:
|
|
|
|
"""Test async generation."""
|
|
|
|
llm = _get_llm(max_tokens=10)
|
|
|
|
output = await llm.agenerate(["Hello, how are you?"])
|
|
|
|
assert isinstance(output, LLMResult)
|
|
|
|
|
|
|
|
|
|
|
|
async def test_openai_async_streaming_callback() -> None:
|
|
|
|
"""Test that streaming correctly invokes on_llm_new_token callback."""
|
|
|
|
callback_handler = FakeCallbackHandler()
|
|
|
|
callback_manager = CallbackManager([callback_handler])
|
|
|
|
llm = _get_llm(
|
|
|
|
max_tokens=10,
|
|
|
|
streaming=True,
|
|
|
|
temperature=0,
|
|
|
|
callback_manager=callback_manager,
|
|
|
|
verbose=True,
|
|
|
|
)
|
|
|
|
result = await llm.agenerate(["Write me a sentence with 100 words."])
|
|
|
|
assert callback_handler.llm_streams == 11
|
|
|
|
assert isinstance(result, LLMResult)
|