mongodb[minor]: Add MongoDB LLM Cache (#17470)
# Description
- **Description:** Adding MongoDB LLM Caching Layer abstraction
- **Issue:** N/A
- **Dependencies:** None
- **Twitter handle:** @mongodb
Checklist:
- [x] PR title: Please title your PR "package: description", where
"package" is whichever of langchain, community, core, experimental, etc.
is being modified. Use "docs: ..." for purely docs changes, "templates:
..." for template changes, "infra: ..." for CI changes.
- Example: "community: add foobar LLM"
- [x] PR Message (above)
- [x] Pass lint and test: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified to check that you're
passing lint and testing. See contribution guidelines for more
information on how to write/run tests, lint, etc:
https://python.langchain.com/docs/contributing/
- [ ] Add tests and docs: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @efriis, @eyurtsev, @hwchase17.
---------
Co-authored-by: Jib <jib@byblack.us>
2024-03-05 18:38:39 +00:00
|
|
|
import os
|
|
|
|
import uuid
|
|
|
|
from typing import Any, List, Union
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
from langchain_core.caches import BaseCache
|
|
|
|
from langchain_core.globals import get_llm_cache, set_llm_cache
|
|
|
|
from langchain_core.load.dump import dumps
|
|
|
|
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
|
|
|
|
from langchain_core.outputs import ChatGeneration, Generation, LLMResult
|
|
|
|
|
|
|
|
from langchain_mongodb.cache import MongoDBAtlasSemanticCache, MongoDBCache
|
|
|
|
from tests.utils import ConsistentFakeEmbeddings, FakeChatModel, FakeLLM
|
|
|
|
|
|
|
|
CONN_STRING = os.environ.get("MONGODB_ATLAS_URI")
|
2024-03-07 22:16:04 +00:00
|
|
|
INDEX_NAME = "langchain-test-index-semantic-cache"
|
|
|
|
DATABASE = "langchain_test_db"
|
|
|
|
COLLECTION = "langchain_test_cache"
|
mongodb[minor]: Add MongoDB LLM Cache (#17470)
# Description
- **Description:** Adding MongoDB LLM Caching Layer abstraction
- **Issue:** N/A
- **Dependencies:** None
- **Twitter handle:** @mongodb
Checklist:
- [x] PR title: Please title your PR "package: description", where
"package" is whichever of langchain, community, core, experimental, etc.
is being modified. Use "docs: ..." for purely docs changes, "templates:
..." for template changes, "infra: ..." for CI changes.
- Example: "community: add foobar LLM"
- [x] PR Message (above)
- [x] Pass lint and test: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified to check that you're
passing lint and testing. See contribution guidelines for more
information on how to write/run tests, lint, etc:
https://python.langchain.com/docs/contributing/
- [ ] Add tests and docs: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @efriis, @eyurtsev, @hwchase17.
---------
Co-authored-by: Jib <jib@byblack.us>
2024-03-05 18:38:39 +00:00
|
|
|
|
|
|
|
|
|
|
|
def random_string() -> str:
|
|
|
|
return str(uuid.uuid4())
|
|
|
|
|
|
|
|
|
|
|
|
def llm_cache(cls: Any) -> BaseCache:
|
|
|
|
set_llm_cache(
|
|
|
|
cls(
|
|
|
|
embedding=ConsistentFakeEmbeddings(dimensionality=1536),
|
|
|
|
connection_string=CONN_STRING,
|
|
|
|
collection_name=COLLECTION,
|
|
|
|
database_name=DATABASE,
|
2024-03-18 22:52:28 +00:00
|
|
|
index_name=INDEX_NAME,
|
2024-03-19 18:30:02 +00:00
|
|
|
score_threshold=0.5,
|
mongodb[minor]: Add MongoDB LLM Cache (#17470)
# Description
- **Description:** Adding MongoDB LLM Caching Layer abstraction
- **Issue:** N/A
- **Dependencies:** None
- **Twitter handle:** @mongodb
Checklist:
- [x] PR title: Please title your PR "package: description", where
"package" is whichever of langchain, community, core, experimental, etc.
is being modified. Use "docs: ..." for purely docs changes, "templates:
..." for template changes, "infra: ..." for CI changes.
- Example: "community: add foobar LLM"
- [x] PR Message (above)
- [x] Pass lint and test: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified to check that you're
passing lint and testing. See contribution guidelines for more
information on how to write/run tests, lint, etc:
https://python.langchain.com/docs/contributing/
- [ ] Add tests and docs: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @efriis, @eyurtsev, @hwchase17.
---------
Co-authored-by: Jib <jib@byblack.us>
2024-03-05 18:38:39 +00:00
|
|
|
wait_until_ready=True,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
assert get_llm_cache()
|
|
|
|
return get_llm_cache()
|
|
|
|
|
|
|
|
|
|
|
|
def _execute_test(
|
|
|
|
prompt: Union[str, List[BaseMessage]],
|
|
|
|
llm: Union[str, FakeLLM, FakeChatModel],
|
|
|
|
response: List[Generation],
|
|
|
|
) -> None:
|
|
|
|
# Fabricate an LLM String
|
|
|
|
|
|
|
|
if not isinstance(llm, str):
|
|
|
|
params = llm.dict()
|
|
|
|
params["stop"] = None
|
|
|
|
llm_string = str(sorted([(k, v) for k, v in params.items()]))
|
|
|
|
else:
|
|
|
|
llm_string = llm
|
|
|
|
|
|
|
|
# If the prompt is a str then we should pass just the string
|
|
|
|
dumped_prompt: str = prompt if isinstance(prompt, str) else dumps(prompt)
|
|
|
|
|
|
|
|
# Update the cache
|
|
|
|
get_llm_cache().update(dumped_prompt, llm_string, response)
|
|
|
|
|
|
|
|
# Retrieve the cached result through 'generate' call
|
|
|
|
output: Union[List[Generation], LLMResult, None]
|
|
|
|
expected_output: Union[List[Generation], LLMResult]
|
|
|
|
|
|
|
|
if isinstance(llm, str):
|
|
|
|
output = get_llm_cache().lookup(dumped_prompt, llm) # type: ignore
|
|
|
|
expected_output = response
|
|
|
|
else:
|
|
|
|
output = llm.generate([prompt]) # type: ignore
|
|
|
|
expected_output = LLMResult(
|
|
|
|
generations=[response],
|
|
|
|
llm_output={},
|
|
|
|
)
|
|
|
|
|
|
|
|
assert output == expected_output # type: ignore
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"prompt, llm, response",
|
|
|
|
[
|
|
|
|
("foo", "bar", [Generation(text="fizz")]),
|
|
|
|
("foo", FakeLLM(), [Generation(text="fizz")]),
|
|
|
|
(
|
|
|
|
[HumanMessage(content="foo")],
|
|
|
|
FakeChatModel(),
|
|
|
|
[ChatGeneration(message=AIMessage(content="foo"))],
|
|
|
|
),
|
|
|
|
],
|
|
|
|
ids=[
|
|
|
|
"plain_cache",
|
|
|
|
"cache_with_llm",
|
|
|
|
"cache_with_chat",
|
|
|
|
],
|
|
|
|
)
|
|
|
|
@pytest.mark.parametrize("cacher", [MongoDBCache, MongoDBAtlasSemanticCache])
|
2024-03-19 18:30:02 +00:00
|
|
|
@pytest.mark.parametrize("remove_score", [True, False])
|
mongodb[minor]: Add MongoDB LLM Cache (#17470)
# Description
- **Description:** Adding MongoDB LLM Caching Layer abstraction
- **Issue:** N/A
- **Dependencies:** None
- **Twitter handle:** @mongodb
Checklist:
- [x] PR title: Please title your PR "package: description", where
"package" is whichever of langchain, community, core, experimental, etc.
is being modified. Use "docs: ..." for purely docs changes, "templates:
..." for template changes, "infra: ..." for CI changes.
- Example: "community: add foobar LLM"
- [x] PR Message (above)
- [x] Pass lint and test: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified to check that you're
passing lint and testing. See contribution guidelines for more
information on how to write/run tests, lint, etc:
https://python.langchain.com/docs/contributing/
- [ ] Add tests and docs: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @efriis, @eyurtsev, @hwchase17.
---------
Co-authored-by: Jib <jib@byblack.us>
2024-03-05 18:38:39 +00:00
|
|
|
def test_mongodb_cache(
|
2024-03-19 18:30:02 +00:00
|
|
|
remove_score: bool,
|
mongodb[minor]: Add MongoDB LLM Cache (#17470)
# Description
- **Description:** Adding MongoDB LLM Caching Layer abstraction
- **Issue:** N/A
- **Dependencies:** None
- **Twitter handle:** @mongodb
Checklist:
- [x] PR title: Please title your PR "package: description", where
"package" is whichever of langchain, community, core, experimental, etc.
is being modified. Use "docs: ..." for purely docs changes, "templates:
..." for template changes, "infra: ..." for CI changes.
- Example: "community: add foobar LLM"
- [x] PR Message (above)
- [x] Pass lint and test: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified to check that you're
passing lint and testing. See contribution guidelines for more
information on how to write/run tests, lint, etc:
https://python.langchain.com/docs/contributing/
- [ ] Add tests and docs: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @efriis, @eyurtsev, @hwchase17.
---------
Co-authored-by: Jib <jib@byblack.us>
2024-03-05 18:38:39 +00:00
|
|
|
cacher: Union[MongoDBCache, MongoDBAtlasSemanticCache],
|
|
|
|
prompt: Union[str, List[BaseMessage]],
|
|
|
|
llm: Union[str, FakeLLM, FakeChatModel],
|
|
|
|
response: List[Generation],
|
|
|
|
) -> None:
|
|
|
|
llm_cache(cacher)
|
2024-03-19 18:30:02 +00:00
|
|
|
if remove_score:
|
|
|
|
get_llm_cache().score_threshold = None # type: ignore
|
mongodb[minor]: Add MongoDB LLM Cache (#17470)
# Description
- **Description:** Adding MongoDB LLM Caching Layer abstraction
- **Issue:** N/A
- **Dependencies:** None
- **Twitter handle:** @mongodb
Checklist:
- [x] PR title: Please title your PR "package: description", where
"package" is whichever of langchain, community, core, experimental, etc.
is being modified. Use "docs: ..." for purely docs changes, "templates:
..." for template changes, "infra: ..." for CI changes.
- Example: "community: add foobar LLM"
- [x] PR Message (above)
- [x] Pass lint and test: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified to check that you're
passing lint and testing. See contribution guidelines for more
information on how to write/run tests, lint, etc:
https://python.langchain.com/docs/contributing/
- [ ] Add tests and docs: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @efriis, @eyurtsev, @hwchase17.
---------
Co-authored-by: Jib <jib@byblack.us>
2024-03-05 18:38:39 +00:00
|
|
|
try:
|
|
|
|
_execute_test(prompt, llm, response)
|
|
|
|
finally:
|
|
|
|
get_llm_cache().clear()
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"prompts, generations",
|
|
|
|
[
|
|
|
|
# Single prompt, single generation
|
|
|
|
([random_string()], [[random_string()]]),
|
|
|
|
# Single prompt, multiple generations
|
|
|
|
([random_string()], [[random_string(), random_string()]]),
|
|
|
|
# Single prompt, multiple generations
|
|
|
|
([random_string()], [[random_string(), random_string(), random_string()]]),
|
|
|
|
# Multiple prompts, multiple generations
|
|
|
|
(
|
|
|
|
[random_string(), random_string()],
|
|
|
|
[[random_string()], [random_string(), random_string()]],
|
|
|
|
),
|
|
|
|
],
|
|
|
|
ids=[
|
|
|
|
"single_prompt_single_generation",
|
|
|
|
"single_prompt_two_generations",
|
|
|
|
"single_prompt_three_generations",
|
|
|
|
"multiple_prompts_multiple_generations",
|
|
|
|
],
|
|
|
|
)
|
|
|
|
def test_mongodb_atlas_cache_matrix(
|
|
|
|
prompts: List[str],
|
|
|
|
generations: List[List[str]],
|
|
|
|
) -> None:
|
|
|
|
llm_cache(MongoDBAtlasSemanticCache)
|
|
|
|
llm = FakeLLM()
|
|
|
|
|
|
|
|
# Fabricate an LLM String
|
|
|
|
params = llm.dict()
|
|
|
|
params["stop"] = None
|
|
|
|
llm_string = str(sorted([(k, v) for k, v in params.items()]))
|
|
|
|
|
|
|
|
llm_generations = [
|
|
|
|
[
|
|
|
|
Generation(text=generation, generation_info=params)
|
|
|
|
for generation in prompt_i_generations
|
|
|
|
]
|
|
|
|
for prompt_i_generations in generations
|
|
|
|
]
|
|
|
|
|
|
|
|
for prompt_i, llm_generations_i in zip(prompts, llm_generations):
|
|
|
|
_execute_test(prompt_i, llm_string, llm_generations_i)
|
|
|
|
assert llm.generate(prompts) == LLMResult(
|
|
|
|
generations=llm_generations, llm_output={}
|
|
|
|
)
|
|
|
|
get_llm_cache().clear()
|