langchain/libs/partners/mongodb/tests/integration_tests/test_cache.py

161 lines
4.8 KiB
Python
Raw Normal View History

mongodb[minor]: Add MongoDB LLM Cache (#17470) # Description - **Description:** Adding MongoDB LLM Caching Layer abstraction - **Issue:** N/A - **Dependencies:** None - **Twitter handle:** @mongodb Checklist: - [x] PR title: Please title your PR "package: description", where "package" is whichever of langchain, community, core, experimental, etc. is being modified. Use "docs: ..." for purely docs changes, "templates: ..." for template changes, "infra: ..." for CI changes. - Example: "community: add foobar LLM" - [x] PR Message (above) - [x] Pass lint and test: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified to check that you're passing lint and testing. See contribution guidelines for more information on how to write/run tests, lint, etc: https://python.langchain.com/docs/contributing/ - [ ] Add tests and docs: If you're adding a new integration, please include 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. It lives in `docs/docs/integrations` directory. Additional guidelines: - Make sure optional dependencies are imported within a function. - Please do not add dependencies to pyproject.toml files (even optional ones) unless they are required for unit tests. - Most PRs should not touch more than one package. - Changes should be backwards compatible. - If you are adding something to community, do not re-import it in langchain. If no one reviews your PR within a few days, please @-mention one of @baskaryan, @efriis, @eyurtsev, @hwchase17. --------- Co-authored-by: Jib <jib@byblack.us>
2024-03-05 18:38:39 +00:00
import os
import uuid
from typing import Any, List, Union
import pytest
from langchain_core.caches import BaseCache
from langchain_core.globals import get_llm_cache, set_llm_cache
from langchain_core.load.dump import dumps
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
from langchain_core.outputs import ChatGeneration, Generation, LLMResult
from langchain_mongodb.cache import MongoDBAtlasSemanticCache, MongoDBCache
from tests.utils import ConsistentFakeEmbeddings, FakeChatModel, FakeLLM
CONN_STRING = os.environ.get("MONGODB_ATLAS_URI")
INDEX_NAME = "langchain-test-index-semantic-cache"
DATABASE = "langchain_test_db"
COLLECTION = "langchain_test_cache"
mongodb[minor]: Add MongoDB LLM Cache (#17470) # Description - **Description:** Adding MongoDB LLM Caching Layer abstraction - **Issue:** N/A - **Dependencies:** None - **Twitter handle:** @mongodb Checklist: - [x] PR title: Please title your PR "package: description", where "package" is whichever of langchain, community, core, experimental, etc. is being modified. Use "docs: ..." for purely docs changes, "templates: ..." for template changes, "infra: ..." for CI changes. - Example: "community: add foobar LLM" - [x] PR Message (above) - [x] Pass lint and test: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified to check that you're passing lint and testing. See contribution guidelines for more information on how to write/run tests, lint, etc: https://python.langchain.com/docs/contributing/ - [ ] Add tests and docs: If you're adding a new integration, please include 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. It lives in `docs/docs/integrations` directory. Additional guidelines: - Make sure optional dependencies are imported within a function. - Please do not add dependencies to pyproject.toml files (even optional ones) unless they are required for unit tests. - Most PRs should not touch more than one package. - Changes should be backwards compatible. - If you are adding something to community, do not re-import it in langchain. If no one reviews your PR within a few days, please @-mention one of @baskaryan, @efriis, @eyurtsev, @hwchase17. --------- Co-authored-by: Jib <jib@byblack.us>
2024-03-05 18:38:39 +00:00
def random_string() -> str:
return str(uuid.uuid4())
def llm_cache(cls: Any) -> BaseCache:
set_llm_cache(
cls(
embedding=ConsistentFakeEmbeddings(dimensionality=1536),
connection_string=CONN_STRING,
collection_name=COLLECTION,
database_name=DATABASE,
index_name=INDEX_NAME,
score_threshold=0.5,
mongodb[minor]: Add MongoDB LLM Cache (#17470) # Description - **Description:** Adding MongoDB LLM Caching Layer abstraction - **Issue:** N/A - **Dependencies:** None - **Twitter handle:** @mongodb Checklist: - [x] PR title: Please title your PR "package: description", where "package" is whichever of langchain, community, core, experimental, etc. is being modified. Use "docs: ..." for purely docs changes, "templates: ..." for template changes, "infra: ..." for CI changes. - Example: "community: add foobar LLM" - [x] PR Message (above) - [x] Pass lint and test: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified to check that you're passing lint and testing. See contribution guidelines for more information on how to write/run tests, lint, etc: https://python.langchain.com/docs/contributing/ - [ ] Add tests and docs: If you're adding a new integration, please include 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. It lives in `docs/docs/integrations` directory. Additional guidelines: - Make sure optional dependencies are imported within a function. - Please do not add dependencies to pyproject.toml files (even optional ones) unless they are required for unit tests. - Most PRs should not touch more than one package. - Changes should be backwards compatible. - If you are adding something to community, do not re-import it in langchain. If no one reviews your PR within a few days, please @-mention one of @baskaryan, @efriis, @eyurtsev, @hwchase17. --------- Co-authored-by: Jib <jib@byblack.us>
2024-03-05 18:38:39 +00:00
wait_until_ready=True,
)
)
assert get_llm_cache()
return get_llm_cache()
def _execute_test(
prompt: Union[str, List[BaseMessage]],
llm: Union[str, FakeLLM, FakeChatModel],
response: List[Generation],
) -> None:
# Fabricate an LLM String
if not isinstance(llm, str):
params = llm.dict()
params["stop"] = None
llm_string = str(sorted([(k, v) for k, v in params.items()]))
else:
llm_string = llm
# If the prompt is a str then we should pass just the string
dumped_prompt: str = prompt if isinstance(prompt, str) else dumps(prompt)
# Update the cache
get_llm_cache().update(dumped_prompt, llm_string, response)
# Retrieve the cached result through 'generate' call
output: Union[List[Generation], LLMResult, None]
expected_output: Union[List[Generation], LLMResult]
if isinstance(llm, str):
output = get_llm_cache().lookup(dumped_prompt, llm) # type: ignore
expected_output = response
else:
output = llm.generate([prompt]) # type: ignore
expected_output = LLMResult(
generations=[response],
llm_output={},
)
assert output == expected_output # type: ignore
@pytest.mark.parametrize(
"prompt, llm, response",
[
("foo", "bar", [Generation(text="fizz")]),
("foo", FakeLLM(), [Generation(text="fizz")]),
(
[HumanMessage(content="foo")],
FakeChatModel(),
[ChatGeneration(message=AIMessage(content="foo"))],
),
],
ids=[
"plain_cache",
"cache_with_llm",
"cache_with_chat",
],
)
@pytest.mark.parametrize("cacher", [MongoDBCache, MongoDBAtlasSemanticCache])
@pytest.mark.parametrize("remove_score", [True, False])
mongodb[minor]: Add MongoDB LLM Cache (#17470) # Description - **Description:** Adding MongoDB LLM Caching Layer abstraction - **Issue:** N/A - **Dependencies:** None - **Twitter handle:** @mongodb Checklist: - [x] PR title: Please title your PR "package: description", where "package" is whichever of langchain, community, core, experimental, etc. is being modified. Use "docs: ..." for purely docs changes, "templates: ..." for template changes, "infra: ..." for CI changes. - Example: "community: add foobar LLM" - [x] PR Message (above) - [x] Pass lint and test: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified to check that you're passing lint and testing. See contribution guidelines for more information on how to write/run tests, lint, etc: https://python.langchain.com/docs/contributing/ - [ ] Add tests and docs: If you're adding a new integration, please include 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. It lives in `docs/docs/integrations` directory. Additional guidelines: - Make sure optional dependencies are imported within a function. - Please do not add dependencies to pyproject.toml files (even optional ones) unless they are required for unit tests. - Most PRs should not touch more than one package. - Changes should be backwards compatible. - If you are adding something to community, do not re-import it in langchain. If no one reviews your PR within a few days, please @-mention one of @baskaryan, @efriis, @eyurtsev, @hwchase17. --------- Co-authored-by: Jib <jib@byblack.us>
2024-03-05 18:38:39 +00:00
def test_mongodb_cache(
remove_score: bool,
mongodb[minor]: Add MongoDB LLM Cache (#17470) # Description - **Description:** Adding MongoDB LLM Caching Layer abstraction - **Issue:** N/A - **Dependencies:** None - **Twitter handle:** @mongodb Checklist: - [x] PR title: Please title your PR "package: description", where "package" is whichever of langchain, community, core, experimental, etc. is being modified. Use "docs: ..." for purely docs changes, "templates: ..." for template changes, "infra: ..." for CI changes. - Example: "community: add foobar LLM" - [x] PR Message (above) - [x] Pass lint and test: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified to check that you're passing lint and testing. See contribution guidelines for more information on how to write/run tests, lint, etc: https://python.langchain.com/docs/contributing/ - [ ] Add tests and docs: If you're adding a new integration, please include 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. It lives in `docs/docs/integrations` directory. Additional guidelines: - Make sure optional dependencies are imported within a function. - Please do not add dependencies to pyproject.toml files (even optional ones) unless they are required for unit tests. - Most PRs should not touch more than one package. - Changes should be backwards compatible. - If you are adding something to community, do not re-import it in langchain. If no one reviews your PR within a few days, please @-mention one of @baskaryan, @efriis, @eyurtsev, @hwchase17. --------- Co-authored-by: Jib <jib@byblack.us>
2024-03-05 18:38:39 +00:00
cacher: Union[MongoDBCache, MongoDBAtlasSemanticCache],
prompt: Union[str, List[BaseMessage]],
llm: Union[str, FakeLLM, FakeChatModel],
response: List[Generation],
) -> None:
llm_cache(cacher)
if remove_score:
get_llm_cache().score_threshold = None # type: ignore
mongodb[minor]: Add MongoDB LLM Cache (#17470) # Description - **Description:** Adding MongoDB LLM Caching Layer abstraction - **Issue:** N/A - **Dependencies:** None - **Twitter handle:** @mongodb Checklist: - [x] PR title: Please title your PR "package: description", where "package" is whichever of langchain, community, core, experimental, etc. is being modified. Use "docs: ..." for purely docs changes, "templates: ..." for template changes, "infra: ..." for CI changes. - Example: "community: add foobar LLM" - [x] PR Message (above) - [x] Pass lint and test: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified to check that you're passing lint and testing. See contribution guidelines for more information on how to write/run tests, lint, etc: https://python.langchain.com/docs/contributing/ - [ ] Add tests and docs: If you're adding a new integration, please include 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. It lives in `docs/docs/integrations` directory. Additional guidelines: - Make sure optional dependencies are imported within a function. - Please do not add dependencies to pyproject.toml files (even optional ones) unless they are required for unit tests. - Most PRs should not touch more than one package. - Changes should be backwards compatible. - If you are adding something to community, do not re-import it in langchain. If no one reviews your PR within a few days, please @-mention one of @baskaryan, @efriis, @eyurtsev, @hwchase17. --------- Co-authored-by: Jib <jib@byblack.us>
2024-03-05 18:38:39 +00:00
try:
_execute_test(prompt, llm, response)
finally:
get_llm_cache().clear()
@pytest.mark.parametrize(
"prompts, generations",
[
# Single prompt, single generation
([random_string()], [[random_string()]]),
# Single prompt, multiple generations
([random_string()], [[random_string(), random_string()]]),
# Single prompt, multiple generations
([random_string()], [[random_string(), random_string(), random_string()]]),
# Multiple prompts, multiple generations
(
[random_string(), random_string()],
[[random_string()], [random_string(), random_string()]],
),
],
ids=[
"single_prompt_single_generation",
"single_prompt_two_generations",
"single_prompt_three_generations",
"multiple_prompts_multiple_generations",
],
)
def test_mongodb_atlas_cache_matrix(
prompts: List[str],
generations: List[List[str]],
) -> None:
llm_cache(MongoDBAtlasSemanticCache)
llm = FakeLLM()
# Fabricate an LLM String
params = llm.dict()
params["stop"] = None
llm_string = str(sorted([(k, v) for k, v in params.items()]))
llm_generations = [
[
Generation(text=generation, generation_info=params)
for generation in prompt_i_generations
]
for prompt_i_generations in generations
]
for prompt_i, llm_generations_i in zip(prompts, llm_generations):
_execute_test(prompt_i, llm_string, llm_generations_i)
assert llm.generate(prompts) == LLMResult(
generations=llm_generations, llm_output={}
)
get_llm_cache().clear()