langchain/libs/experimental/langchain_experimental/video_captioning/base.py

149 lines
4.9 KiB
Python
Raw Normal View History

from typing import Any, Dict, List, Optional
from langchain.chains.base import Chain
from langchain_core.callbacks import CallbackManagerForChainRun
from langchain_core.language_models import BaseLanguageModel
from langchain_core.prompts import PromptTemplate
from langchain_core.pydantic_v1 import Extra
from langchain_experimental.video_captioning.services.audio_service import (
AudioProcessor,
)
from langchain_experimental.video_captioning.services.caption_service import (
CaptionProcessor,
)
from langchain_experimental.video_captioning.services.combine_service import (
CombineProcessor,
)
from langchain_experimental.video_captioning.services.image_service import (
ImageProcessor,
)
from langchain_experimental.video_captioning.services.srt_service import SRTProcessor
class VideoCaptioningChain(Chain):
"""
Video Captioning Chain.
"""
llm: BaseLanguageModel
assemblyai_key: str
prompt: Optional[PromptTemplate] = None
verbose: bool = True
use_logging: Optional[bool] = True
frame_skip: int = -1
image_delta_threshold: int = 3000000
closed_caption_char_limit: int = 20
closed_caption_similarity_threshold: int = 80
use_unclustered_video_models: bool = False
class Config:
extra = Extra.allow
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
return ["video_file_path"]
@property
def output_keys(self) -> List[str]:
return ["srt"]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
if "video_file_path" not in inputs:
raise ValueError(
"Missing 'video_file_path' in inputs for video captioning."
)
video_file_path = inputs["video_file_path"]
nl = "\n"
run_manager.on_text(
"Loading processors..." + nl
) if self.use_logging and run_manager else None
audio_processor = AudioProcessor(api_key=self.assemblyai_key)
image_processor = ImageProcessor(
frame_skip=self.frame_skip, threshold=self.image_delta_threshold
)
caption_processor = CaptionProcessor(
llm=self.llm,
verbose=self.verbose,
similarity_threshold=self.closed_caption_similarity_threshold,
use_unclustered_models=self.use_unclustered_video_models,
)
combine_processor = CombineProcessor(
llm=self.llm,
verbose=self.verbose,
char_limit=self.closed_caption_char_limit,
)
srt_processor = SRTProcessor()
run_manager.on_text(
"Finished loading processors."
+ nl
+ "Generating subtitles from audio..."
+ nl
) if self.use_logging and run_manager else None
# Get models for speech to text subtitles
audio_models = audio_processor.process(video_file_path, run_manager)
run_manager.on_text(
"Finished generating subtitles:"
+ nl
+ f"{nl.join(str(obj) for obj in audio_models)}"
+ nl
+ "Generating closed captions from video..."
+ nl
) if self.use_logging and run_manager else None
# Get models for image frame description
image_models = image_processor.process(video_file_path, run_manager)
run_manager.on_text(
"Finished generating closed captions:"
+ nl
+ f"{nl.join(str(obj) for obj in image_models)}"
+ nl
+ "Refining closed captions..."
+ nl
) if self.use_logging and run_manager else None
# Get models for video event closed-captions
video_models = caption_processor.process(image_models, run_manager)
run_manager.on_text(
"Finished refining closed captions:"
+ nl
+ f"{nl.join(str(obj) for obj in video_models)}"
+ nl
+ "Combining subtitles with closed captions..."
+ nl
) if self.use_logging and run_manager else None
# Combine the subtitle models with the closed-caption models
caption_models = combine_processor.process(
video_models, audio_models, run_manager
)
run_manager.on_text(
"Finished combining subtitles with closed captions:"
+ nl
+ f"{nl.join(str(obj) for obj in caption_models)}"
+ nl
+ "Generating SRT file..."
+ nl
) if self.use_logging and run_manager else None
# Convert the combined model to SRT format
srt_content = srt_processor.process(caption_models)
run_manager.on_text(
"Finished generating srt file." + nl
) if self.use_logging and run_manager else None
return {"srt": srt_content}
@property
def _chain_type(self) -> str:
return "video_captioning_chain"