mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
149 lines
4.9 KiB
Python
149 lines
4.9 KiB
Python
|
from typing import Any, Dict, List, Optional
|
||
|
|
||
|
from langchain.chains.base import Chain
|
||
|
from langchain_core.callbacks import CallbackManagerForChainRun
|
||
|
from langchain_core.language_models import BaseLanguageModel
|
||
|
from langchain_core.prompts import PromptTemplate
|
||
|
from langchain_core.pydantic_v1 import Extra
|
||
|
|
||
|
from langchain_experimental.video_captioning.services.audio_service import (
|
||
|
AudioProcessor,
|
||
|
)
|
||
|
from langchain_experimental.video_captioning.services.caption_service import (
|
||
|
CaptionProcessor,
|
||
|
)
|
||
|
from langchain_experimental.video_captioning.services.combine_service import (
|
||
|
CombineProcessor,
|
||
|
)
|
||
|
from langchain_experimental.video_captioning.services.image_service import (
|
||
|
ImageProcessor,
|
||
|
)
|
||
|
from langchain_experimental.video_captioning.services.srt_service import SRTProcessor
|
||
|
|
||
|
|
||
|
class VideoCaptioningChain(Chain):
|
||
|
"""
|
||
|
Video Captioning Chain.
|
||
|
"""
|
||
|
|
||
|
llm: BaseLanguageModel
|
||
|
assemblyai_key: str
|
||
|
prompt: Optional[PromptTemplate] = None
|
||
|
verbose: bool = True
|
||
|
use_logging: Optional[bool] = True
|
||
|
frame_skip: int = -1
|
||
|
image_delta_threshold: int = 3000000
|
||
|
closed_caption_char_limit: int = 20
|
||
|
closed_caption_similarity_threshold: int = 80
|
||
|
use_unclustered_video_models: bool = False
|
||
|
|
||
|
class Config:
|
||
|
extra = Extra.allow
|
||
|
arbitrary_types_allowed = True
|
||
|
|
||
|
@property
|
||
|
def input_keys(self) -> List[str]:
|
||
|
return ["video_file_path"]
|
||
|
|
||
|
@property
|
||
|
def output_keys(self) -> List[str]:
|
||
|
return ["srt"]
|
||
|
|
||
|
def _call(
|
||
|
self,
|
||
|
inputs: Dict[str, Any],
|
||
|
run_manager: Optional[CallbackManagerForChainRun] = None,
|
||
|
) -> Dict[str, str]:
|
||
|
if "video_file_path" not in inputs:
|
||
|
raise ValueError(
|
||
|
"Missing 'video_file_path' in inputs for video captioning."
|
||
|
)
|
||
|
video_file_path = inputs["video_file_path"]
|
||
|
nl = "\n"
|
||
|
|
||
|
run_manager.on_text(
|
||
|
"Loading processors..." + nl
|
||
|
) if self.use_logging and run_manager else None
|
||
|
|
||
|
audio_processor = AudioProcessor(api_key=self.assemblyai_key)
|
||
|
image_processor = ImageProcessor(
|
||
|
frame_skip=self.frame_skip, threshold=self.image_delta_threshold
|
||
|
)
|
||
|
caption_processor = CaptionProcessor(
|
||
|
llm=self.llm,
|
||
|
verbose=self.verbose,
|
||
|
similarity_threshold=self.closed_caption_similarity_threshold,
|
||
|
use_unclustered_models=self.use_unclustered_video_models,
|
||
|
)
|
||
|
combine_processor = CombineProcessor(
|
||
|
llm=self.llm,
|
||
|
verbose=self.verbose,
|
||
|
char_limit=self.closed_caption_char_limit,
|
||
|
)
|
||
|
srt_processor = SRTProcessor()
|
||
|
|
||
|
run_manager.on_text(
|
||
|
"Finished loading processors."
|
||
|
+ nl
|
||
|
+ "Generating subtitles from audio..."
|
||
|
+ nl
|
||
|
) if self.use_logging and run_manager else None
|
||
|
|
||
|
# Get models for speech to text subtitles
|
||
|
audio_models = audio_processor.process(video_file_path, run_manager)
|
||
|
run_manager.on_text(
|
||
|
"Finished generating subtitles:"
|
||
|
+ nl
|
||
|
+ f"{nl.join(str(obj) for obj in audio_models)}"
|
||
|
+ nl
|
||
|
+ "Generating closed captions from video..."
|
||
|
+ nl
|
||
|
) if self.use_logging and run_manager else None
|
||
|
|
||
|
# Get models for image frame description
|
||
|
image_models = image_processor.process(video_file_path, run_manager)
|
||
|
run_manager.on_text(
|
||
|
"Finished generating closed captions:"
|
||
|
+ nl
|
||
|
+ f"{nl.join(str(obj) for obj in image_models)}"
|
||
|
+ nl
|
||
|
+ "Refining closed captions..."
|
||
|
+ nl
|
||
|
) if self.use_logging and run_manager else None
|
||
|
|
||
|
# Get models for video event closed-captions
|
||
|
video_models = caption_processor.process(image_models, run_manager)
|
||
|
run_manager.on_text(
|
||
|
"Finished refining closed captions:"
|
||
|
+ nl
|
||
|
+ f"{nl.join(str(obj) for obj in video_models)}"
|
||
|
+ nl
|
||
|
+ "Combining subtitles with closed captions..."
|
||
|
+ nl
|
||
|
) if self.use_logging and run_manager else None
|
||
|
|
||
|
# Combine the subtitle models with the closed-caption models
|
||
|
caption_models = combine_processor.process(
|
||
|
video_models, audio_models, run_manager
|
||
|
)
|
||
|
run_manager.on_text(
|
||
|
"Finished combining subtitles with closed captions:"
|
||
|
+ nl
|
||
|
+ f"{nl.join(str(obj) for obj in caption_models)}"
|
||
|
+ nl
|
||
|
+ "Generating SRT file..."
|
||
|
+ nl
|
||
|
) if self.use_logging and run_manager else None
|
||
|
|
||
|
# Convert the combined model to SRT format
|
||
|
srt_content = srt_processor.process(caption_models)
|
||
|
run_manager.on_text(
|
||
|
"Finished generating srt file." + nl
|
||
|
) if self.use_logging and run_manager else None
|
||
|
|
||
|
return {"srt": srt_content}
|
||
|
|
||
|
@property
|
||
|
def _chain_type(self) -> str:
|
||
|
return "video_captioning_chain"
|