mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
129 lines
4.0 KiB
Python
129 lines
4.0 KiB
Python
|
from typing import Any, Dict, List, Optional, Union
|
||
|
|
||
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
||
|
from langchain_core.language_models.llms import BaseLLM
|
||
|
from langchain_core.outputs import Generation, LLMResult
|
||
|
from langchain_core.pydantic_v1 import Field, root_validator
|
||
|
|
||
|
|
||
|
class CTranslate2(BaseLLM):
|
||
|
"""CTranslate2 language model."""
|
||
|
|
||
|
model_path: str = ""
|
||
|
"""Path to the CTranslate2 model directory."""
|
||
|
|
||
|
tokenizer_name: str = ""
|
||
|
"""Name of the original Hugging Face model needed to load the proper tokenizer."""
|
||
|
|
||
|
device: str = "cpu"
|
||
|
"""Device to use (possible values are: cpu, cuda, auto)."""
|
||
|
|
||
|
device_index: Union[int, List[int]] = 0
|
||
|
"""Device IDs where to place this generator on."""
|
||
|
|
||
|
compute_type: Union[str, Dict[str, str]] = "default"
|
||
|
"""
|
||
|
Model computation type or a dictionary mapping a device name to the computation type
|
||
|
(possible values are: default, auto, int8, int8_float32, int8_float16,
|
||
|
int8_bfloat16, int16, float16, bfloat16, float32).
|
||
|
"""
|
||
|
|
||
|
max_length: int = 512
|
||
|
"""Maximum generation length."""
|
||
|
|
||
|
sampling_topk: int = 1
|
||
|
"""Randomly sample predictions from the top K candidates."""
|
||
|
|
||
|
sampling_topp: float = 1
|
||
|
"""Keep the most probable tokens whose cumulative probability exceeds this value."""
|
||
|
|
||
|
sampling_temperature: float = 1
|
||
|
"""Sampling temperature to generate more random samples."""
|
||
|
|
||
|
client: Any #: :meta private:
|
||
|
|
||
|
tokenizer: Any #: :meta private:
|
||
|
|
||
|
ctranslate2_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||
|
"""
|
||
|
Holds any model parameters valid for `ctranslate2.Generator` call not
|
||
|
explicitly specified.
|
||
|
"""
|
||
|
|
||
|
@root_validator()
|
||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||
|
"""Validate that python package exists in environment."""
|
||
|
|
||
|
try:
|
||
|
import ctranslate2
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Could not import ctranslate2 python package. "
|
||
|
"Please install it with `pip install ctranslate2`."
|
||
|
)
|
||
|
|
||
|
try:
|
||
|
import transformers
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Could not import transformers python package. "
|
||
|
"Please install it with `pip install transformers`."
|
||
|
)
|
||
|
|
||
|
values["client"] = ctranslate2.Generator(
|
||
|
model_path=values["model_path"],
|
||
|
device=values["device"],
|
||
|
device_index=values["device_index"],
|
||
|
compute_type=values["compute_type"],
|
||
|
**values["ctranslate2_kwargs"],
|
||
|
)
|
||
|
|
||
|
values["tokenizer"] = transformers.AutoTokenizer.from_pretrained(
|
||
|
values["tokenizer_name"]
|
||
|
)
|
||
|
|
||
|
return values
|
||
|
|
||
|
@property
|
||
|
def _default_params(self) -> Dict[str, Any]:
|
||
|
"""Get the default parameters."""
|
||
|
return {
|
||
|
"max_length": self.max_length,
|
||
|
"sampling_topk": self.sampling_topk,
|
||
|
"sampling_topp": self.sampling_topp,
|
||
|
"sampling_temperature": self.sampling_temperature,
|
||
|
}
|
||
|
|
||
|
def _generate(
|
||
|
self,
|
||
|
prompts: List[str],
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> LLMResult:
|
||
|
# build sampling parameters
|
||
|
params = {**self._default_params, **kwargs}
|
||
|
|
||
|
# call the model
|
||
|
encoded_prompts = self.tokenizer(prompts)["input_ids"]
|
||
|
tokenized_prompts = [
|
||
|
self.tokenizer.convert_ids_to_tokens(encoded_prompt)
|
||
|
for encoded_prompt in encoded_prompts
|
||
|
]
|
||
|
|
||
|
results = self.client.generate_batch(tokenized_prompts, **params)
|
||
|
|
||
|
sequences = [result.sequences_ids[0] for result in results]
|
||
|
decoded_sequences = [self.tokenizer.decode(seq) for seq in sequences]
|
||
|
|
||
|
generations = []
|
||
|
for text in decoded_sequences:
|
||
|
generations.append([Generation(text=text)])
|
||
|
|
||
|
return LLMResult(generations=generations)
|
||
|
|
||
|
@property
|
||
|
def _llm_type(self) -> str:
|
||
|
"""Return type of llm."""
|
||
|
return "ctranslate2"
|