mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
233 lines
8.2 KiB
Python
233 lines
8.2 KiB
Python
|
import json
|
||
|
from typing import Any, Dict, List, Optional
|
||
|
|
||
|
from langchain_core.callbacks.manager import CallbackManagerForLLMRun
|
||
|
from langchain_core.language_models import BaseChatModel
|
||
|
from langchain_core.messages import (
|
||
|
AIMessage,
|
||
|
BaseMessage,
|
||
|
ChatMessage,
|
||
|
HumanMessage,
|
||
|
SystemMessage,
|
||
|
)
|
||
|
from langchain_core.outputs import ChatGeneration, ChatResult
|
||
|
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
|
||
|
from langchain_core.utils import (
|
||
|
convert_to_secret_str,
|
||
|
get_from_dict_or_env,
|
||
|
get_pydantic_field_names,
|
||
|
)
|
||
|
from langchain_core.utils.utils import build_extra_kwargs
|
||
|
|
||
|
SUPPORTED_ROLES: List[str] = [
|
||
|
"system",
|
||
|
"user",
|
||
|
"assistant",
|
||
|
]
|
||
|
|
||
|
|
||
|
class ChatSnowflakeCortexError(Exception):
|
||
|
"""Error with Snowpark client."""
|
||
|
|
||
|
|
||
|
def _convert_message_to_dict(message: BaseMessage) -> dict:
|
||
|
"""Convert a LangChain message to a dictionary.
|
||
|
|
||
|
Args:
|
||
|
message: The LangChain message.
|
||
|
|
||
|
Returns:
|
||
|
The dictionary.
|
||
|
"""
|
||
|
message_dict: Dict[str, Any] = {
|
||
|
"content": message.content,
|
||
|
}
|
||
|
|
||
|
# populate role and additional message data
|
||
|
if isinstance(message, ChatMessage) and message.role in SUPPORTED_ROLES:
|
||
|
message_dict["role"] = message.role
|
||
|
elif isinstance(message, SystemMessage):
|
||
|
message_dict["role"] = "system"
|
||
|
elif isinstance(message, HumanMessage):
|
||
|
message_dict["role"] = "user"
|
||
|
elif isinstance(message, AIMessage):
|
||
|
message_dict["role"] = "assistant"
|
||
|
else:
|
||
|
raise TypeError(f"Got unknown type {message}")
|
||
|
return message_dict
|
||
|
|
||
|
|
||
|
def _truncate_at_stop_tokens(
|
||
|
text: str,
|
||
|
stop: Optional[List[str]],
|
||
|
) -> str:
|
||
|
"""Truncates text at the earliest stop token found."""
|
||
|
if stop is None:
|
||
|
return text
|
||
|
|
||
|
for stop_token in stop:
|
||
|
stop_token_idx = text.find(stop_token)
|
||
|
if stop_token_idx != -1:
|
||
|
text = text[:stop_token_idx]
|
||
|
return text
|
||
|
|
||
|
|
||
|
class ChatSnowflakeCortex(BaseChatModel):
|
||
|
"""Snowflake Cortex based Chat model
|
||
|
|
||
|
To use you must have the ``snowflake-snowpark-python`` Python package installed and
|
||
|
either:
|
||
|
|
||
|
1. environment variables set with your snowflake credentials or
|
||
|
2. directly passed in as kwargs to the ChatSnowflakeCortex constructor.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.chat_models import ChatSnowflakeCortex
|
||
|
chat = ChatSnowflakeCortex()
|
||
|
"""
|
||
|
|
||
|
_sp_session: Any = None
|
||
|
"""Snowpark session object."""
|
||
|
|
||
|
model: str = "snowflake-arctic"
|
||
|
"""Snowflake cortex hosted LLM model name, defaulted to `snowflake-arctic`.
|
||
|
Refer to docs for more options."""
|
||
|
|
||
|
cortex_function: str = "complete"
|
||
|
"""Cortex function to use, defaulted to `complete`.
|
||
|
Refer to docs for more options."""
|
||
|
|
||
|
temperature: float = 0.7
|
||
|
"""Model temperature. Value should be >= 0 and <= 1.0"""
|
||
|
|
||
|
max_tokens: Optional[int] = None
|
||
|
"""The maximum number of output tokens in the response."""
|
||
|
|
||
|
top_p: Optional[float] = None
|
||
|
"""top_p adjusts the number of choices for each predicted tokens based on
|
||
|
cumulative probabilities. Value should be ranging between 0.0 and 1.0.
|
||
|
"""
|
||
|
|
||
|
snowflake_username: Optional[str] = Field(default=None, alias="username")
|
||
|
"""Automatically inferred from env var `SNOWFLAKE_USERNAME` if not provided."""
|
||
|
snowflake_password: Optional[SecretStr] = Field(default=None, alias="password")
|
||
|
"""Automatically inferred from env var `SNOWFLAKE_PASSWORD` if not provided."""
|
||
|
snowflake_account: Optional[str] = Field(default=None, alias="account")
|
||
|
"""Automatically inferred from env var `SNOWFLAKE_ACCOUNT` if not provided."""
|
||
|
snowflake_database: Optional[str] = Field(default=None, alias="database")
|
||
|
"""Automatically inferred from env var `SNOWFLAKE_DATABASE` if not provided."""
|
||
|
snowflake_schema: Optional[str] = Field(default=None, alias="schema")
|
||
|
"""Automatically inferred from env var `SNOWFLAKE_SCHEMA` if not provided."""
|
||
|
snowflake_warehouse: Optional[str] = Field(default=None, alias="warehouse")
|
||
|
"""Automatically inferred from env var `SNOWFLAKE_WAREHOUSE` if not provided."""
|
||
|
snowflake_role: Optional[str] = Field(default=None, alias="role")
|
||
|
"""Automatically inferred from env var `SNOWFLAKE_ROLE` if not provided."""
|
||
|
|
||
|
@root_validator(pre=True)
|
||
|
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
||
|
"""Build extra kwargs from additional params that were passed in."""
|
||
|
all_required_field_names = get_pydantic_field_names(cls)
|
||
|
extra = values.get("model_kwargs", {})
|
||
|
values["model_kwargs"] = build_extra_kwargs(
|
||
|
extra, values, all_required_field_names
|
||
|
)
|
||
|
return values
|
||
|
|
||
|
@root_validator()
|
||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||
|
try:
|
||
|
from snowflake.snowpark import Session
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"`snowflake-snowpark-python` package not found, please install it with "
|
||
|
"`pip install snowflake-snowpark-python`"
|
||
|
)
|
||
|
|
||
|
values["snowflake_username"] = get_from_dict_or_env(
|
||
|
values, "snowflake_username", "SNOWFLAKE_USERNAME"
|
||
|
)
|
||
|
values["snowflake_password"] = convert_to_secret_str(
|
||
|
get_from_dict_or_env(values, "snowflake_password", "SNOWFLAKE_PASSWORD")
|
||
|
)
|
||
|
values["snowflake_account"] = get_from_dict_or_env(
|
||
|
values, "snowflake_account", "SNOWFLAKE_ACCOUNT"
|
||
|
)
|
||
|
values["snowflake_database"] = get_from_dict_or_env(
|
||
|
values, "snowflake_database", "SNOWFLAKE_DATABASE"
|
||
|
)
|
||
|
values["snowflake_schema"] = get_from_dict_or_env(
|
||
|
values, "snowflake_schema", "SNOWFLAKE_SCHEMA"
|
||
|
)
|
||
|
values["snowflake_warehouse"] = get_from_dict_or_env(
|
||
|
values, "snowflake_warehouse", "SNOWFLAKE_WAREHOUSE"
|
||
|
)
|
||
|
values["snowflake_role"] = get_from_dict_or_env(
|
||
|
values, "snowflake_role", "SNOWFLAKE_ROLE"
|
||
|
)
|
||
|
|
||
|
connection_params = {
|
||
|
"account": values["snowflake_account"],
|
||
|
"user": values["snowflake_username"],
|
||
|
"password": values["snowflake_password"].get_secret_value(),
|
||
|
"database": values["snowflake_database"],
|
||
|
"schema": values["snowflake_schema"],
|
||
|
"warehouse": values["snowflake_warehouse"],
|
||
|
"role": values["snowflake_role"],
|
||
|
}
|
||
|
|
||
|
try:
|
||
|
values["_sp_session"] = Session.builder.configs(connection_params).create()
|
||
|
except Exception as e:
|
||
|
raise ChatSnowflakeCortexError(f"Failed to create session: {e}")
|
||
|
|
||
|
return values
|
||
|
|
||
|
def __del__(self) -> None:
|
||
|
if getattr(self, "_sp_session", None) is not None:
|
||
|
self._sp_session.close()
|
||
|
|
||
|
@property
|
||
|
def _llm_type(self) -> str:
|
||
|
"""Get the type of language model used by this chat model."""
|
||
|
return f"snowflake-cortex-{self.model}"
|
||
|
|
||
|
def _generate(
|
||
|
self,
|
||
|
messages: List[BaseMessage],
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> ChatResult:
|
||
|
message_dicts = [_convert_message_to_dict(m) for m in messages]
|
||
|
message_str = str(message_dicts)
|
||
|
options = {"temperature": self.temperature}
|
||
|
if self.top_p is not None:
|
||
|
options["top_p"] = self.top_p
|
||
|
if self.max_tokens is not None:
|
||
|
options["max_tokens"] = self.max_tokens
|
||
|
options_str = str(options)
|
||
|
sql_stmt = f"""
|
||
|
select snowflake.cortex.{self.cortex_function}(
|
||
|
'{self.model}'
|
||
|
,{message_str},{options_str}) as llm_response;"""
|
||
|
|
||
|
try:
|
||
|
l_rows = self._sp_session.sql(sql_stmt).collect()
|
||
|
except Exception as e:
|
||
|
raise ChatSnowflakeCortexError(
|
||
|
f"Error while making request to Snowflake Cortex via Snowpark: {e}"
|
||
|
)
|
||
|
|
||
|
response = json.loads(l_rows[0]["LLM_RESPONSE"])
|
||
|
ai_message_content = response["choices"][0]["messages"]
|
||
|
|
||
|
content = _truncate_at_stop_tokens(ai_message_content, stop)
|
||
|
message = AIMessage(
|
||
|
content=content,
|
||
|
response_metadata=response["usage"],
|
||
|
)
|
||
|
generation = ChatGeneration(message=message)
|
||
|
return ChatResult(generations=[generation])
|