2023-12-11 21:53:30 +00:00
|
|
|
"""Azure OpenAI chat wrapper."""
|
|
|
|
from __future__ import annotations
|
|
|
|
|
|
|
|
import logging
|
|
|
|
import os
|
|
|
|
import warnings
|
|
|
|
from typing import Any, Callable, Dict, List, Union
|
|
|
|
|
2024-01-05 23:03:28 +00:00
|
|
|
from langchain_core._api.deprecation import deprecated
|
2023-12-11 21:53:30 +00:00
|
|
|
from langchain_core.outputs import ChatResult
|
|
|
|
from langchain_core.pydantic_v1 import BaseModel, Field, root_validator
|
|
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
|
|
|
|
|
|
from langchain_community.chat_models.openai import ChatOpenAI
|
|
|
|
from langchain_community.utils.openai import is_openai_v1
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
2024-01-05 23:03:28 +00:00
|
|
|
@deprecated(
|
2024-01-09 19:36:58 +00:00
|
|
|
since="0.0.10",
|
2024-05-03 18:29:36 +00:00
|
|
|
removal="0.3.0",
|
2024-01-10 04:36:16 +00:00
|
|
|
alternative_import="langchain_openai.AzureChatOpenAI",
|
2024-01-05 23:03:28 +00:00
|
|
|
)
|
2023-12-11 21:53:30 +00:00
|
|
|
class AzureChatOpenAI(ChatOpenAI):
|
|
|
|
"""`Azure OpenAI` Chat Completion API.
|
|
|
|
|
|
|
|
To use this class you
|
|
|
|
must have a deployed model on Azure OpenAI. Use `deployment_name` in the
|
|
|
|
constructor to refer to the "Model deployment name" in the Azure portal.
|
|
|
|
|
|
|
|
In addition, you should have the ``openai`` python package installed, and the
|
|
|
|
following environment variables set or passed in constructor in lower case:
|
|
|
|
- ``AZURE_OPENAI_API_KEY``
|
2023-12-21 03:03:45 +00:00
|
|
|
- ``AZURE_OPENAI_ENDPOINT``
|
2023-12-11 21:53:30 +00:00
|
|
|
- ``AZURE_OPENAI_AD_TOKEN``
|
|
|
|
- ``OPENAI_API_VERSION``
|
|
|
|
- ``OPENAI_PROXY``
|
|
|
|
|
|
|
|
For example, if you have `gpt-35-turbo` deployed, with the deployment name
|
|
|
|
`35-turbo-dev`, the constructor should look like:
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
AzureChatOpenAI(
|
|
|
|
azure_deployment="35-turbo-dev",
|
|
|
|
openai_api_version="2023-05-15",
|
|
|
|
)
|
|
|
|
|
|
|
|
Be aware the API version may change.
|
|
|
|
|
|
|
|
You can also specify the version of the model using ``model_version`` constructor
|
|
|
|
parameter, as Azure OpenAI doesn't return model version with the response.
|
|
|
|
|
|
|
|
Default is empty. When you specify the version, it will be appended to the
|
|
|
|
model name in the response. Setting correct version will help you to calculate the
|
|
|
|
cost properly. Model version is not validated, so make sure you set it correctly
|
|
|
|
to get the correct cost.
|
|
|
|
|
|
|
|
Any parameters that are valid to be passed to the openai.create call can be passed
|
|
|
|
in, even if not explicitly saved on this class.
|
|
|
|
"""
|
|
|
|
|
|
|
|
azure_endpoint: Union[str, None] = None
|
|
|
|
"""Your Azure endpoint, including the resource.
|
|
|
|
|
|
|
|
Automatically inferred from env var `AZURE_OPENAI_ENDPOINT` if not provided.
|
|
|
|
|
|
|
|
Example: `https://example-resource.azure.openai.com/`
|
|
|
|
"""
|
|
|
|
deployment_name: Union[str, None] = Field(default=None, alias="azure_deployment")
|
|
|
|
"""A model deployment.
|
|
|
|
|
|
|
|
If given sets the base client URL to include `/deployments/{azure_deployment}`.
|
|
|
|
Note: this means you won't be able to use non-deployment endpoints.
|
|
|
|
"""
|
|
|
|
openai_api_version: str = Field(default="", alias="api_version")
|
|
|
|
"""Automatically inferred from env var `OPENAI_API_VERSION` if not provided."""
|
|
|
|
openai_api_key: Union[str, None] = Field(default=None, alias="api_key")
|
|
|
|
"""Automatically inferred from env var `AZURE_OPENAI_API_KEY` if not provided."""
|
|
|
|
azure_ad_token: Union[str, None] = None
|
|
|
|
"""Your Azure Active Directory token.
|
|
|
|
|
|
|
|
Automatically inferred from env var `AZURE_OPENAI_AD_TOKEN` if not provided.
|
|
|
|
|
|
|
|
For more:
|
|
|
|
https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id.
|
2024-05-22 22:21:08 +00:00
|
|
|
"""
|
2023-12-11 21:53:30 +00:00
|
|
|
azure_ad_token_provider: Union[Callable[[], str], None] = None
|
|
|
|
"""A function that returns an Azure Active Directory token.
|
|
|
|
|
|
|
|
Will be invoked on every request.
|
|
|
|
"""
|
|
|
|
model_version: str = ""
|
|
|
|
"""Legacy, for openai<1.0.0 support."""
|
|
|
|
openai_api_type: str = ""
|
|
|
|
"""Legacy, for openai<1.0.0 support."""
|
|
|
|
validate_base_url: bool = True
|
|
|
|
"""For backwards compatibility. If legacy val openai_api_base is passed in, try to
|
|
|
|
infer if it is a base_url or azure_endpoint and update accordingly.
|
|
|
|
"""
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def get_lc_namespace(cls) -> List[str]:
|
|
|
|
"""Get the namespace of the langchain object."""
|
|
|
|
return ["langchain", "chat_models", "azure_openai"]
|
|
|
|
|
|
|
|
@root_validator()
|
|
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
|
|
"""Validate that api key and python package exists in environment."""
|
|
|
|
if values["n"] < 1:
|
|
|
|
raise ValueError("n must be at least 1.")
|
|
|
|
if values["n"] > 1 and values["streaming"]:
|
|
|
|
raise ValueError("n must be 1 when streaming.")
|
|
|
|
|
|
|
|
# Check OPENAI_KEY for backwards compatibility.
|
|
|
|
# TODO: Remove OPENAI_API_KEY support to avoid possible conflict when using
|
|
|
|
# other forms of azure credentials.
|
|
|
|
values["openai_api_key"] = (
|
|
|
|
values["openai_api_key"]
|
|
|
|
or os.getenv("AZURE_OPENAI_API_KEY")
|
|
|
|
or os.getenv("OPENAI_API_KEY")
|
|
|
|
)
|
|
|
|
values["openai_api_base"] = values["openai_api_base"] or os.getenv(
|
|
|
|
"OPENAI_API_BASE"
|
|
|
|
)
|
|
|
|
values["openai_api_version"] = values["openai_api_version"] or os.getenv(
|
|
|
|
"OPENAI_API_VERSION"
|
|
|
|
)
|
|
|
|
# Check OPENAI_ORGANIZATION for backwards compatibility.
|
|
|
|
values["openai_organization"] = (
|
|
|
|
values["openai_organization"]
|
|
|
|
or os.getenv("OPENAI_ORG_ID")
|
|
|
|
or os.getenv("OPENAI_ORGANIZATION")
|
|
|
|
)
|
|
|
|
values["azure_endpoint"] = values["azure_endpoint"] or os.getenv(
|
|
|
|
"AZURE_OPENAI_ENDPOINT"
|
|
|
|
)
|
|
|
|
values["azure_ad_token"] = values["azure_ad_token"] or os.getenv(
|
|
|
|
"AZURE_OPENAI_AD_TOKEN"
|
|
|
|
)
|
|
|
|
|
|
|
|
values["openai_api_type"] = get_from_dict_or_env(
|
|
|
|
values, "openai_api_type", "OPENAI_API_TYPE", default="azure"
|
|
|
|
)
|
|
|
|
values["openai_proxy"] = get_from_dict_or_env(
|
|
|
|
values, "openai_proxy", "OPENAI_PROXY", default=""
|
|
|
|
)
|
|
|
|
|
|
|
|
try:
|
|
|
|
import openai
|
|
|
|
|
|
|
|
except ImportError:
|
|
|
|
raise ImportError(
|
|
|
|
"Could not import openai python package. "
|
|
|
|
"Please install it with `pip install openai`."
|
|
|
|
)
|
|
|
|
if is_openai_v1():
|
|
|
|
# For backwards compatibility. Before openai v1, no distinction was made
|
|
|
|
# between azure_endpoint and base_url (openai_api_base).
|
|
|
|
openai_api_base = values["openai_api_base"]
|
|
|
|
if openai_api_base and values["validate_base_url"]:
|
|
|
|
if "/openai" not in openai_api_base:
|
|
|
|
values["openai_api_base"] = (
|
|
|
|
values["openai_api_base"].rstrip("/") + "/openai"
|
|
|
|
)
|
|
|
|
warnings.warn(
|
|
|
|
"As of openai>=1.0.0, Azure endpoints should be specified via "
|
|
|
|
f"the `azure_endpoint` param not `openai_api_base` "
|
|
|
|
f"(or alias `base_url`). Updating `openai_api_base` from "
|
|
|
|
f"{openai_api_base} to {values['openai_api_base']}."
|
|
|
|
)
|
|
|
|
if values["deployment_name"]:
|
|
|
|
warnings.warn(
|
|
|
|
"As of openai>=1.0.0, if `deployment_name` (or alias "
|
|
|
|
"`azure_deployment`) is specified then "
|
|
|
|
"`openai_api_base` (or alias `base_url`) should not be. "
|
|
|
|
"Instead use `deployment_name` (or alias `azure_deployment`) "
|
|
|
|
"and `azure_endpoint`."
|
|
|
|
)
|
|
|
|
if values["deployment_name"] not in values["openai_api_base"]:
|
|
|
|
warnings.warn(
|
|
|
|
"As of openai>=1.0.0, if `openai_api_base` "
|
|
|
|
"(or alias `base_url`) is specified it is expected to be "
|
|
|
|
"of the form "
|
|
|
|
"https://example-resource.azure.openai.com/openai/deployments/example-deployment. " # noqa: E501
|
|
|
|
f"Updating {openai_api_base} to "
|
|
|
|
f"{values['openai_api_base']}."
|
|
|
|
)
|
|
|
|
values["openai_api_base"] += (
|
|
|
|
"/deployments/" + values["deployment_name"]
|
|
|
|
)
|
|
|
|
values["deployment_name"] = None
|
|
|
|
client_params = {
|
|
|
|
"api_version": values["openai_api_version"],
|
|
|
|
"azure_endpoint": values["azure_endpoint"],
|
|
|
|
"azure_deployment": values["deployment_name"],
|
|
|
|
"api_key": values["openai_api_key"],
|
|
|
|
"azure_ad_token": values["azure_ad_token"],
|
|
|
|
"azure_ad_token_provider": values["azure_ad_token_provider"],
|
|
|
|
"organization": values["openai_organization"],
|
|
|
|
"base_url": values["openai_api_base"],
|
|
|
|
"timeout": values["request_timeout"],
|
|
|
|
"max_retries": values["max_retries"],
|
|
|
|
"default_headers": values["default_headers"],
|
|
|
|
"default_query": values["default_query"],
|
|
|
|
"http_client": values["http_client"],
|
|
|
|
}
|
|
|
|
values["client"] = openai.AzureOpenAI(**client_params).chat.completions
|
|
|
|
values["async_client"] = openai.AsyncAzureOpenAI(
|
|
|
|
**client_params
|
|
|
|
).chat.completions
|
|
|
|
else:
|
|
|
|
values["client"] = openai.ChatCompletion
|
|
|
|
return values
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
|
|
"""Get the default parameters for calling OpenAI API."""
|
|
|
|
if is_openai_v1():
|
|
|
|
return super()._default_params
|
|
|
|
else:
|
|
|
|
return {
|
|
|
|
**super()._default_params,
|
|
|
|
"engine": self.deployment_name,
|
|
|
|
}
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _identifying_params(self) -> Dict[str, Any]:
|
|
|
|
"""Get the identifying parameters."""
|
|
|
|
return {**self._default_params}
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _client_params(self) -> Dict[str, Any]:
|
|
|
|
"""Get the config params used for the openai client."""
|
|
|
|
if is_openai_v1():
|
|
|
|
return super()._client_params
|
|
|
|
else:
|
|
|
|
return {
|
|
|
|
**super()._client_params,
|
|
|
|
"api_type": self.openai_api_type,
|
|
|
|
"api_version": self.openai_api_version,
|
|
|
|
}
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _llm_type(self) -> str:
|
|
|
|
return "azure-openai-chat"
|
|
|
|
|
|
|
|
@property
|
|
|
|
def lc_attributes(self) -> Dict[str, Any]:
|
|
|
|
return {
|
|
|
|
"openai_api_type": self.openai_api_type,
|
|
|
|
"openai_api_version": self.openai_api_version,
|
|
|
|
}
|
|
|
|
|
|
|
|
def _create_chat_result(self, response: Union[dict, BaseModel]) -> ChatResult:
|
|
|
|
if not isinstance(response, dict):
|
|
|
|
response = response.dict()
|
|
|
|
for res in response["choices"]:
|
|
|
|
if res.get("finish_reason", None) == "content_filter":
|
|
|
|
raise ValueError(
|
|
|
|
"Azure has not provided the response due to a content filter "
|
|
|
|
"being triggered"
|
|
|
|
)
|
|
|
|
chat_result = super()._create_chat_result(response)
|
|
|
|
|
|
|
|
if "model" in response:
|
|
|
|
model = response["model"]
|
|
|
|
if self.model_version:
|
|
|
|
model = f"{model}-{self.model_version}"
|
|
|
|
|
|
|
|
if chat_result.llm_output is not None and isinstance(
|
|
|
|
chat_result.llm_output, dict
|
|
|
|
):
|
|
|
|
chat_result.llm_output["model_name"] = model
|
|
|
|
|
|
|
|
return chat_result
|