mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
205 lines
6.7 KiB
Python
205 lines
6.7 KiB
Python
|
"""
|
||
|
Question answering over an RDF or OWL graph using SPARQL.
|
||
|
"""
|
||
|
from __future__ import annotations
|
||
|
|
||
|
from typing import Any, Dict, List, Optional
|
||
|
|
||
|
from langchain.chains.base import Chain
|
||
|
from langchain.chains.llm import LLMChain
|
||
|
from langchain_core.callbacks.manager import CallbackManagerForChainRun
|
||
|
from langchain_core.language_models import BaseLanguageModel
|
||
|
from langchain_core.prompts.base import BasePromptTemplate
|
||
|
from langchain_core.prompts.prompt import PromptTemplate
|
||
|
from langchain_core.pydantic_v1 import Field
|
||
|
|
||
|
from langchain_community.chains.graph_qa.prompts import SPARQL_QA_PROMPT
|
||
|
from langchain_community.graphs import NeptuneRdfGraph
|
||
|
|
||
|
INTERMEDIATE_STEPS_KEY = "intermediate_steps"
|
||
|
|
||
|
SPARQL_GENERATION_TEMPLATE = """
|
||
|
Task: Generate a SPARQL SELECT statement for querying a graph database.
|
||
|
For instance, to find all email addresses of John Doe, the following
|
||
|
query in backticks would be suitable:
|
||
|
```
|
||
|
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
|
||
|
SELECT ?email
|
||
|
WHERE {{
|
||
|
?person foaf:name "John Doe" .
|
||
|
?person foaf:mbox ?email .
|
||
|
}}
|
||
|
```
|
||
|
Instructions:
|
||
|
Use only the node types and properties provided in the schema.
|
||
|
Do not use any node types and properties that are not explicitly provided.
|
||
|
Include all necessary prefixes.
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
Schema:
|
||
|
{schema}
|
||
|
Note: Be as concise as possible.
|
||
|
Do not include any explanations or apologies in your responses.
|
||
|
Do not respond to any questions that ask for anything else than
|
||
|
for you to construct a SPARQL query.
|
||
|
Do not include any text except the SPARQL query generated.
|
||
|
|
||
|
The question is:
|
||
|
{prompt}"""
|
||
|
|
||
|
SPARQL_GENERATION_PROMPT = PromptTemplate(
|
||
|
input_variables=["schema", "prompt"], template=SPARQL_GENERATION_TEMPLATE
|
||
|
)
|
||
|
|
||
|
|
||
|
def extract_sparql(query: str) -> str:
|
||
|
"""Extract SPARQL code from a text.
|
||
|
|
||
|
Args:
|
||
|
query: Text to extract SPARQL code from.
|
||
|
|
||
|
Returns:
|
||
|
SPARQL code extracted from the text.
|
||
|
"""
|
||
|
query = query.strip()
|
||
|
querytoks = query.split("```")
|
||
|
if len(querytoks) == 3:
|
||
|
query = querytoks[1]
|
||
|
|
||
|
if query.startswith("sparql"):
|
||
|
query = query[6:]
|
||
|
elif query.startswith("<sparql>") and query.endswith("</sparql>"):
|
||
|
query = query[8:-9]
|
||
|
return query
|
||
|
|
||
|
|
||
|
class NeptuneSparqlQAChain(Chain):
|
||
|
"""Chain for question-answering against a Neptune graph
|
||
|
by generating SPARQL statements.
|
||
|
|
||
|
*Security note*: Make sure that the database connection uses credentials
|
||
|
that are narrowly-scoped to only include necessary permissions.
|
||
|
Failure to do so may result in data corruption or loss, since the calling
|
||
|
code may attempt commands that would result in deletion, mutation
|
||
|
of data if appropriately prompted or reading sensitive data if such
|
||
|
data is present in the database.
|
||
|
The best way to guard against such negative outcomes is to (as appropriate)
|
||
|
limit the permissions granted to the credentials used with this tool.
|
||
|
|
||
|
See https://python.langchain.com/docs/security for more information.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
chain = NeptuneSparqlQAChain.from_llm(
|
||
|
llm=llm,
|
||
|
graph=graph
|
||
|
)
|
||
|
response = chain.invoke(query)
|
||
|
"""
|
||
|
|
||
|
graph: NeptuneRdfGraph = Field(exclude=True)
|
||
|
sparql_generation_chain: LLMChain
|
||
|
qa_chain: LLMChain
|
||
|
input_key: str = "query" #: :meta private:
|
||
|
output_key: str = "result" #: :meta private:
|
||
|
top_k: int = 10
|
||
|
return_intermediate_steps: bool = False
|
||
|
"""Whether or not to return the intermediate steps along with the final answer."""
|
||
|
return_direct: bool = False
|
||
|
"""Whether or not to return the result of querying the graph directly."""
|
||
|
extra_instructions: Optional[str] = None
|
||
|
"""Extra instructions by the appended to the query generation prompt."""
|
||
|
|
||
|
@property
|
||
|
def input_keys(self) -> List[str]:
|
||
|
return [self.input_key]
|
||
|
|
||
|
@property
|
||
|
def output_keys(self) -> List[str]:
|
||
|
_output_keys = [self.output_key]
|
||
|
return _output_keys
|
||
|
|
||
|
@classmethod
|
||
|
def from_llm(
|
||
|
cls,
|
||
|
llm: BaseLanguageModel,
|
||
|
*,
|
||
|
qa_prompt: BasePromptTemplate = SPARQL_QA_PROMPT,
|
||
|
sparql_prompt: BasePromptTemplate = SPARQL_GENERATION_PROMPT,
|
||
|
examples: Optional[str] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> NeptuneSparqlQAChain:
|
||
|
"""Initialize from LLM."""
|
||
|
qa_chain = LLMChain(llm=llm, prompt=qa_prompt)
|
||
|
template_to_use = SPARQL_GENERATION_TEMPLATE
|
||
|
if examples:
|
||
|
template_to_use = template_to_use.replace(
|
||
|
"Examples:", "Examples: " + examples
|
||
|
)
|
||
|
sparql_prompt = PromptTemplate(
|
||
|
input_variables=["schema", "prompt"], template=template_to_use
|
||
|
)
|
||
|
sparql_generation_chain = LLMChain(llm=llm, prompt=sparql_prompt)
|
||
|
|
||
|
return cls( # type: ignore[call-arg]
|
||
|
qa_chain=qa_chain,
|
||
|
sparql_generation_chain=sparql_generation_chain,
|
||
|
examples=examples,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
def _call(
|
||
|
self,
|
||
|
inputs: Dict[str, Any],
|
||
|
run_manager: Optional[CallbackManagerForChainRun] = None,
|
||
|
) -> Dict[str, str]:
|
||
|
"""
|
||
|
Generate SPARQL query, use it to retrieve a response from the gdb and answer
|
||
|
the question.
|
||
|
"""
|
||
|
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
|
||
|
callbacks = _run_manager.get_child()
|
||
|
prompt = inputs[self.input_key]
|
||
|
|
||
|
intermediate_steps: List = []
|
||
|
|
||
|
generated_sparql = self.sparql_generation_chain.run(
|
||
|
{"prompt": prompt, "schema": self.graph.get_schema}, callbacks=callbacks
|
||
|
)
|
||
|
|
||
|
# Extract SPARQL
|
||
|
generated_sparql = extract_sparql(generated_sparql)
|
||
|
|
||
|
_run_manager.on_text("Generated SPARQL:", end="\n", verbose=self.verbose)
|
||
|
_run_manager.on_text(
|
||
|
generated_sparql, color="green", end="\n", verbose=self.verbose
|
||
|
)
|
||
|
|
||
|
intermediate_steps.append({"query": generated_sparql})
|
||
|
|
||
|
context = self.graph.query(generated_sparql)
|
||
|
|
||
|
if self.return_direct:
|
||
|
final_result = context
|
||
|
else:
|
||
|
_run_manager.on_text("Full Context:", end="\n", verbose=self.verbose)
|
||
|
_run_manager.on_text(
|
||
|
str(context), color="green", end="\n", verbose=self.verbose
|
||
|
)
|
||
|
|
||
|
intermediate_steps.append({"context": context})
|
||
|
|
||
|
result = self.qa_chain(
|
||
|
{"prompt": prompt, "context": context},
|
||
|
callbacks=callbacks,
|
||
|
)
|
||
|
final_result = result[self.qa_chain.output_key]
|
||
|
|
||
|
chain_result: Dict[str, Any] = {self.output_key: final_result}
|
||
|
if self.return_intermediate_steps:
|
||
|
chain_result[INTERMEDIATE_STEPS_KEY] = intermediate_steps
|
||
|
|
||
|
return chain_result
|