mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
104 lines
3.6 KiB
Python
104 lines
3.6 KiB
Python
|
"""Question answering over a graph."""
|
||
|
from __future__ import annotations
|
||
|
|
||
|
from typing import Any, Dict, List, Optional
|
||
|
|
||
|
from langchain.chains.base import Chain
|
||
|
from langchain.chains.llm import LLMChain
|
||
|
from langchain_core.callbacks.manager import CallbackManagerForChainRun
|
||
|
from langchain_core.language_models import BaseLanguageModel
|
||
|
from langchain_core.prompts import BasePromptTemplate
|
||
|
from langchain_core.pydantic_v1 import Field
|
||
|
|
||
|
from langchain_community.chains.graph_qa.prompts import (
|
||
|
ENTITY_EXTRACTION_PROMPT,
|
||
|
GRAPH_QA_PROMPT,
|
||
|
)
|
||
|
from langchain_community.graphs.networkx_graph import NetworkxEntityGraph, get_entities
|
||
|
|
||
|
|
||
|
class GraphQAChain(Chain):
|
||
|
"""Chain for question-answering against a graph.
|
||
|
|
||
|
*Security note*: Make sure that the database connection uses credentials
|
||
|
that are narrowly-scoped to only include necessary permissions.
|
||
|
Failure to do so may result in data corruption or loss, since the calling
|
||
|
code may attempt commands that would result in deletion, mutation
|
||
|
of data if appropriately prompted or reading sensitive data if such
|
||
|
data is present in the database.
|
||
|
The best way to guard against such negative outcomes is to (as appropriate)
|
||
|
limit the permissions granted to the credentials used with this tool.
|
||
|
|
||
|
See https://python.langchain.com/docs/security for more information.
|
||
|
"""
|
||
|
|
||
|
graph: NetworkxEntityGraph = Field(exclude=True)
|
||
|
entity_extraction_chain: LLMChain
|
||
|
qa_chain: LLMChain
|
||
|
input_key: str = "query" #: :meta private:
|
||
|
output_key: str = "result" #: :meta private:
|
||
|
|
||
|
@property
|
||
|
def input_keys(self) -> List[str]:
|
||
|
"""Input keys.
|
||
|
|
||
|
:meta private:
|
||
|
"""
|
||
|
return [self.input_key]
|
||
|
|
||
|
@property
|
||
|
def output_keys(self) -> List[str]:
|
||
|
"""Output keys.
|
||
|
|
||
|
:meta private:
|
||
|
"""
|
||
|
_output_keys = [self.output_key]
|
||
|
return _output_keys
|
||
|
|
||
|
@classmethod
|
||
|
def from_llm(
|
||
|
cls,
|
||
|
llm: BaseLanguageModel,
|
||
|
qa_prompt: BasePromptTemplate = GRAPH_QA_PROMPT,
|
||
|
entity_prompt: BasePromptTemplate = ENTITY_EXTRACTION_PROMPT,
|
||
|
**kwargs: Any,
|
||
|
) -> GraphQAChain:
|
||
|
"""Initialize from LLM."""
|
||
|
qa_chain = LLMChain(llm=llm, prompt=qa_prompt)
|
||
|
entity_chain = LLMChain(llm=llm, prompt=entity_prompt)
|
||
|
|
||
|
return cls(
|
||
|
qa_chain=qa_chain,
|
||
|
entity_extraction_chain=entity_chain,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
def _call(
|
||
|
self,
|
||
|
inputs: Dict[str, Any],
|
||
|
run_manager: Optional[CallbackManagerForChainRun] = None,
|
||
|
) -> Dict[str, str]:
|
||
|
"""Extract entities, look up info and answer question."""
|
||
|
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
|
||
|
question = inputs[self.input_key]
|
||
|
|
||
|
entity_string = self.entity_extraction_chain.run(question)
|
||
|
|
||
|
_run_manager.on_text("Entities Extracted:", end="\n", verbose=self.verbose)
|
||
|
_run_manager.on_text(
|
||
|
entity_string, color="green", end="\n", verbose=self.verbose
|
||
|
)
|
||
|
entities = get_entities(entity_string)
|
||
|
context = ""
|
||
|
all_triplets = []
|
||
|
for entity in entities:
|
||
|
all_triplets.extend(self.graph.get_entity_knowledge(entity))
|
||
|
context = "\n".join(all_triplets)
|
||
|
_run_manager.on_text("Full Context:", end="\n", verbose=self.verbose)
|
||
|
_run_manager.on_text(context, color="green", end="\n", verbose=self.verbose)
|
||
|
result = self.qa_chain(
|
||
|
{"question": question, "context": context},
|
||
|
callbacks=_run_manager.get_child(),
|
||
|
)
|
||
|
return {self.output_key: result[self.qa_chain.output_key]}
|