langchain/tests/integration_tests/vectorstores/test_qdrant.py

58 lines
1.9 KiB
Python
Raw Normal View History

"""Test Qdrant functionality."""
from typing import List
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.vectorstores import Qdrant
class FakeEmbeddings(Embeddings):
"""Fake embeddings functionality for testing."""
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Return simple embeddings."""
return [[1.0] * 9 + [float(i)] for i in range(len(texts))]
def embed_query(self, text: str) -> List[float]:
"""Return simple embeddings."""
return [1.0] * 9 + [0.0]
def test_qdrant() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
docsearch = Qdrant.from_texts(texts, FakeEmbeddings(), host="localhost")
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo")]
def test_qdrant_with_metadatas() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = Qdrant.from_texts(
texts,
FakeEmbeddings(),
metadatas=metadatas,
host="localhost",
)
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo", metadata={"page": 0})]
def test_qdrant_max_marginal_relevance_search() -> None:
"""Test end to end construction and MRR search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = Qdrant.from_texts(
texts,
FakeEmbeddings(),
metadatas=metadatas,
host="localhost",
)
output = docsearch.max_marginal_relevance_search("foo", k=2, fetch_k=3)
assert output == [
Document(page_content="foo", metadata={"page": 0}),
Document(page_content="bar", metadata={"page": 1}),
]