mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
92 lines
2.7 KiB
Python
92 lines
2.7 KiB
Python
|
import os
|
||
|
|
||
|
from langchain.chat_models import ChatOpenAI
|
||
|
from langchain.embeddings import OpenAIEmbeddings
|
||
|
from langchain.prompts import ChatPromptTemplate
|
||
|
from langchain.pydantic_v1 import BaseModel
|
||
|
from langchain.schema.document import Document
|
||
|
from langchain.schema.output_parser import StrOutputParser
|
||
|
from langchain.schema.runnable import RunnableParallel, RunnablePassthrough
|
||
|
from langchain.vectorstores import MongoDBAtlasVectorSearch
|
||
|
from pymongo import MongoClient
|
||
|
|
||
|
MONGO_URI = os.environ["MONGO_URI"]
|
||
|
PARENT_DOC_ID_KEY = "parent_doc_id"
|
||
|
# Note that if you change this, you also need to change it in `rag_mongo/chain.py`
|
||
|
DB_NAME = "langchain-test-2"
|
||
|
COLLECTION_NAME = "test"
|
||
|
ATLAS_VECTOR_SEARCH_INDEX_NAME = "default"
|
||
|
EMBEDDING_FIELD_NAME = "embedding"
|
||
|
client = MongoClient(MONGO_URI)
|
||
|
db = client[DB_NAME]
|
||
|
MONGODB_COLLECTION = db[COLLECTION_NAME]
|
||
|
|
||
|
|
||
|
vector_search = MongoDBAtlasVectorSearch.from_connection_string(
|
||
|
MONGO_URI,
|
||
|
DB_NAME + "." + COLLECTION_NAME,
|
||
|
OpenAIEmbeddings(disallowed_special=()),
|
||
|
index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,
|
||
|
)
|
||
|
|
||
|
|
||
|
def retrieve(query: str):
|
||
|
results = vector_search.similarity_search(
|
||
|
query,
|
||
|
k=4,
|
||
|
pre_filter={"doc_level": {"$eq": "child"}},
|
||
|
post_filter_pipeline=[
|
||
|
{"$project": {"embedding": 0}},
|
||
|
{
|
||
|
"$lookup": {
|
||
|
"from": COLLECTION_NAME,
|
||
|
"localField": PARENT_DOC_ID_KEY,
|
||
|
"foreignField": PARENT_DOC_ID_KEY,
|
||
|
"as": "parent_context",
|
||
|
"pipeline": [
|
||
|
{"$match": {"doc_level": "parent"}},
|
||
|
{"$limit": 1},
|
||
|
{"$project": {"embedding": 0}},
|
||
|
],
|
||
|
}
|
||
|
},
|
||
|
],
|
||
|
)
|
||
|
parent_docs = []
|
||
|
parent_doc_ids = set()
|
||
|
for result in results:
|
||
|
res = result.metadata["parent_context"][0]
|
||
|
text = res.pop("text")
|
||
|
# This causes serialization issues.
|
||
|
res.pop("_id")
|
||
|
parent_doc = Document(page_content=text, metadata=res)
|
||
|
if parent_doc.metadata[PARENT_DOC_ID_KEY] not in parent_doc_ids:
|
||
|
parent_doc_ids.add(parent_doc.metadata[PARENT_DOC_ID_KEY])
|
||
|
parent_docs.append(parent_doc)
|
||
|
return parent_docs
|
||
|
|
||
|
|
||
|
# RAG prompt
|
||
|
template = """Answer the question based only on the following context:
|
||
|
{context}
|
||
|
Question: {question}
|
||
|
"""
|
||
|
prompt = ChatPromptTemplate.from_template(template)
|
||
|
|
||
|
# RAG
|
||
|
model = ChatOpenAI()
|
||
|
chain = (
|
||
|
RunnableParallel({"context": retrieve, "question": RunnablePassthrough()})
|
||
|
| prompt
|
||
|
| model
|
||
|
| StrOutputParser()
|
||
|
)
|
||
|
|
||
|
|
||
|
# Add typing for input
|
||
|
class Question(BaseModel):
|
||
|
__root__: str
|
||
|
|
||
|
|
||
|
chain = chain.with_types(input_type=Question)
|