mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
56 lines
2.0 KiB
Python
56 lines
2.0 KiB
Python
|
"""Fake Embedding class for testing purposes."""
|
||
|
|
||
|
from typing import List
|
||
|
|
||
|
from langchain_core.embeddings import Embeddings
|
||
|
|
||
|
fake_texts = ["foo", "bar", "baz"]
|
||
|
|
||
|
|
||
|
class FakeEmbeddings(Embeddings):
|
||
|
"""Fake embeddings functionality for testing."""
|
||
|
|
||
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||
|
"""Return simple embeddings.
|
||
|
Embeddings encode each text as its index."""
|
||
|
return [[float(1.0)] * 9 + [float(i)] for i in range(len(texts))]
|
||
|
|
||
|
async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
|
||
|
return self.embed_documents(texts)
|
||
|
|
||
|
def embed_query(self, text: str) -> List[float]:
|
||
|
"""Return constant query embeddings.
|
||
|
Embeddings are identical to embed_documents(texts)[0].
|
||
|
Distance to each text will be that text's index,
|
||
|
as it was passed to embed_documents."""
|
||
|
return [float(1.0)] * 9 + [float(0.0)]
|
||
|
|
||
|
async def aembed_query(self, text: str) -> List[float]:
|
||
|
return self.embed_query(text)
|
||
|
|
||
|
|
||
|
class ConsistentFakeEmbeddings(FakeEmbeddings):
|
||
|
"""Fake embeddings which remember all the texts seen so far to return consistent
|
||
|
vectors for the same texts."""
|
||
|
|
||
|
def __init__(self, dimensionality: int = 10) -> None:
|
||
|
self.known_texts: List[str] = []
|
||
|
self.dimensionality = dimensionality
|
||
|
|
||
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||
|
"""Return consistent embeddings for each text seen so far."""
|
||
|
out_vectors = []
|
||
|
for text in texts:
|
||
|
if text not in self.known_texts:
|
||
|
self.known_texts.append(text)
|
||
|
vector = [float(1.0)] * (self.dimensionality - 1) + [
|
||
|
float(self.known_texts.index(text))
|
||
|
]
|
||
|
out_vectors.append(vector)
|
||
|
return out_vectors
|
||
|
|
||
|
def embed_query(self, text: str) -> List[float]:
|
||
|
"""Return consistent embeddings for the text, if seen before, or a constant
|
||
|
one if the text is unknown."""
|
||
|
return self.embed_documents([text])[0]
|