mirror of
https://github.com/hwchase17/langchain
synced 2024-11-02 09:40:22 +00:00
229 lines
7.5 KiB
Python
229 lines
7.5 KiB
Python
|
"""
|
||
|
Pathway Vector Store client.
|
||
|
|
||
|
|
||
|
The Pathway Vector Server is a pipeline written in the Pathway framweork which indexes
|
||
|
all files in a given folder, embeds them, and builds a vector index. The pipeline reacts
|
||
|
to changes in source files, automatically updating appropriate index entries.
|
||
|
|
||
|
The PathwayVectorClient implements the LangChain VectorStore interface and queries the
|
||
|
PathwayVectorServer to retrieve up-to-date documents.
|
||
|
|
||
|
You can use the client with managed instances of Pathway Vector Store, or run your own
|
||
|
instance as described at https://pathway.com/developers/user-guide/llm-xpack/vectorstore_pipeline/
|
||
|
|
||
|
"""
|
||
|
|
||
|
import json
|
||
|
import logging
|
||
|
from typing import Any, Callable, Iterable, List, Optional, Tuple
|
||
|
|
||
|
import requests
|
||
|
from langchain_core.documents import Document
|
||
|
from langchain_core.embeddings import Embeddings
|
||
|
from langchain_core.vectorstores import VectorStore
|
||
|
|
||
|
|
||
|
# Copied from https://github.com/pathwaycom/pathway/blob/main/python/pathway/xpacks/llm/vector_store.py
|
||
|
# to remove dependency on Pathway library.
|
||
|
class _VectorStoreClient:
|
||
|
def __init__(
|
||
|
self,
|
||
|
host: Optional[str] = None,
|
||
|
port: Optional[int] = None,
|
||
|
url: Optional[str] = None,
|
||
|
):
|
||
|
"""
|
||
|
A client you can use to query :py:class:`VectorStoreServer`.
|
||
|
|
||
|
Please provide aither the `url`, or `host` and `port`.
|
||
|
|
||
|
Args:
|
||
|
- host: host on which `:py:class:`VectorStoreServer` listens
|
||
|
- port: port on which `:py:class:`VectorStoreServer` listens
|
||
|
- url: url at which `:py:class:`VectorStoreServer` listens
|
||
|
"""
|
||
|
err = "Either (`host` and `port`) or `url` must be provided, but not both."
|
||
|
if url is not None:
|
||
|
if host or port:
|
||
|
raise ValueError(err)
|
||
|
self.url = url
|
||
|
else:
|
||
|
if host is None:
|
||
|
raise ValueError(err)
|
||
|
port = port or 80
|
||
|
self.url = f"http://{host}:{port}"
|
||
|
|
||
|
def query(
|
||
|
self, query: str, k: int = 3, metadata_filter: Optional[str] = None
|
||
|
) -> List[dict]:
|
||
|
"""
|
||
|
Perform a query to the vector store and fetch results.
|
||
|
|
||
|
Args:
|
||
|
- query:
|
||
|
- k: number of documents to be returned
|
||
|
- metadata_filter: optional string representing the metadata filtering query
|
||
|
in the JMESPath format. The search will happen only for documents
|
||
|
satisfying this filtering.
|
||
|
"""
|
||
|
|
||
|
data = {"query": query, "k": k}
|
||
|
if metadata_filter is not None:
|
||
|
data["metadata_filter"] = metadata_filter
|
||
|
url = self.url + "/v1/retrieve"
|
||
|
response = requests.post(
|
||
|
url,
|
||
|
data=json.dumps(data),
|
||
|
headers={"Content-Type": "application/json"},
|
||
|
timeout=3,
|
||
|
)
|
||
|
responses = response.json()
|
||
|
return sorted(responses, key=lambda x: x["dist"])
|
||
|
|
||
|
# Make an alias
|
||
|
__call__ = query
|
||
|
|
||
|
def get_vectorstore_statistics(self) -> dict:
|
||
|
"""Fetch basic statistics about the vector store."""
|
||
|
|
||
|
url = self.url + "/v1/statistics"
|
||
|
response = requests.post(
|
||
|
url,
|
||
|
json={},
|
||
|
headers={"Content-Type": "application/json"},
|
||
|
)
|
||
|
responses = response.json()
|
||
|
return responses
|
||
|
|
||
|
def get_input_files(
|
||
|
self,
|
||
|
metadata_filter: Optional[str] = None,
|
||
|
filepath_globpattern: Optional[str] = None,
|
||
|
) -> list:
|
||
|
"""
|
||
|
Fetch information on documents in the the vector store.
|
||
|
|
||
|
Args:
|
||
|
metadata_filter: optional string representing the metadata filtering query
|
||
|
in the JMESPath format. The search will happen only for documents
|
||
|
satisfying this filtering.
|
||
|
filepath_globpattern: optional glob pattern specifying which documents
|
||
|
will be searched for this query.
|
||
|
"""
|
||
|
url = self.url + "/v1/inputs"
|
||
|
response = requests.post(
|
||
|
url,
|
||
|
json={
|
||
|
"metadata_filter": metadata_filter,
|
||
|
"filepath_globpattern": filepath_globpattern,
|
||
|
},
|
||
|
headers={"Content-Type": "application/json"},
|
||
|
)
|
||
|
responses = response.json()
|
||
|
return responses
|
||
|
|
||
|
|
||
|
class PathwayVectorClient(VectorStore):
|
||
|
"""
|
||
|
VectorStore connecting to Pathway Vector Store.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
host: Optional[str] = None,
|
||
|
port: Optional[int] = None,
|
||
|
url: Optional[str] = None,
|
||
|
) -> None:
|
||
|
"""
|
||
|
A client you can use to query Pathway Vector Store.
|
||
|
|
||
|
Please provide aither the `url`, or `host` and `port`.
|
||
|
|
||
|
Args:
|
||
|
- host: host on which Pathway Vector Store listens
|
||
|
- port: port on which Pathway Vector Store listens
|
||
|
- url: url at which Pathway Vector Store listens
|
||
|
"""
|
||
|
self.client = _VectorStoreClient(host, port, url)
|
||
|
|
||
|
def add_texts(
|
||
|
self,
|
||
|
texts: Iterable[str],
|
||
|
metadatas: Optional[List[dict]] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> List[str]:
|
||
|
"""Pathway is not suitable for this method."""
|
||
|
raise NotImplementedError(
|
||
|
"Pathway vector store does not support adding or removing texts"
|
||
|
" from client."
|
||
|
)
|
||
|
|
||
|
@classmethod
|
||
|
def from_texts(
|
||
|
cls,
|
||
|
texts: List[str],
|
||
|
embedding: Embeddings,
|
||
|
metadatas: Optional[List[dict]] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> "PathwayVectorClient":
|
||
|
raise NotImplementedError(
|
||
|
"Pathway vector store does not support initializing from_texts."
|
||
|
)
|
||
|
|
||
|
def similarity_search(
|
||
|
self, query: str, k: int = 4, **kwargs: Any
|
||
|
) -> List[Document]:
|
||
|
metadata_filter = kwargs.pop("metadata_filter", None)
|
||
|
if kwargs:
|
||
|
logging.warning(
|
||
|
"Unknown kwargs passed to PathwayVectorClient.similarity_search: %s",
|
||
|
kwargs,
|
||
|
)
|
||
|
rets = self.client(query=query, k=k, metadata_filter=metadata_filter)
|
||
|
|
||
|
return [
|
||
|
Document(page_content=ret["text"], metadata=ret["metadata"]) for ret in rets
|
||
|
]
|
||
|
|
||
|
def similarity_search_with_score(
|
||
|
self,
|
||
|
query: str,
|
||
|
k: int = 4,
|
||
|
metadata_filter: Optional[str] = None,
|
||
|
) -> List[Tuple[Document, float]]:
|
||
|
"""Run similarity search with Pathway with distance.
|
||
|
|
||
|
Args:
|
||
|
- query (str): Query text to search for.
|
||
|
- k (int): Number of results to return. Defaults to 4.
|
||
|
- metadata_filter (Optional[str]): Filter by metadata.
|
||
|
Filtering query should be in JMESPath format. Defaults to None.
|
||
|
|
||
|
Returns:
|
||
|
List[Tuple[Document, float]]: List of documents most similar to
|
||
|
the query text and cosine distance in float for each.
|
||
|
Lower score represents more similarity.
|
||
|
"""
|
||
|
rets = self.client(query=query, k=k, metadata_filter=metadata_filter)
|
||
|
|
||
|
return [
|
||
|
(Document(page_content=ret["text"], metadata=ret["metadata"]), ret["dist"])
|
||
|
for ret in rets
|
||
|
]
|
||
|
|
||
|
def _select_relevance_score_fn(self) -> Callable[[float], float]:
|
||
|
return self._cosine_relevance_score_fn
|
||
|
|
||
|
def get_vectorstore_statistics(self) -> dict:
|
||
|
"""Fetch basic statistics about the Vector Store."""
|
||
|
return self.client.get_vectorstore_statistics()
|
||
|
|
||
|
def get_input_files(
|
||
|
self,
|
||
|
metadata_filter: Optional[str] = None,
|
||
|
filepath_globpattern: Optional[str] = None,
|
||
|
) -> list:
|
||
|
"""List files indexed by the Vector Store."""
|
||
|
return self.client.get_input_files(metadata_filter, filepath_globpattern)
|