mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
85 lines
2.8 KiB
Python
85 lines
2.8 KiB
Python
|
import os
|
||
|
from enum import Enum
|
||
|
from typing import Any, Dict, List, Optional
|
||
|
|
||
|
from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
||
|
from langchain_core.documents import Document
|
||
|
from langchain_core.retrievers import BaseRetriever
|
||
|
|
||
|
|
||
|
class SearchDepth(Enum):
|
||
|
"""Search depth as enumerator."""
|
||
|
|
||
|
BASIC = "basic"
|
||
|
ADVANCED = "advanced"
|
||
|
|
||
|
|
||
|
class TavilySearchAPIRetriever(BaseRetriever):
|
||
|
"""Tavily Search API retriever."""
|
||
|
|
||
|
k: int = 10
|
||
|
include_generated_answer: bool = False
|
||
|
include_raw_content: bool = False
|
||
|
include_images: bool = False
|
||
|
search_depth: SearchDepth = SearchDepth.BASIC
|
||
|
include_domains: Optional[List[str]] = None
|
||
|
exclude_domains: Optional[List[str]] = None
|
||
|
kwargs: Optional[Dict[str, Any]] = {}
|
||
|
api_key: Optional[str] = None
|
||
|
|
||
|
def _get_relevant_documents(
|
||
|
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
||
|
) -> List[Document]:
|
||
|
try:
|
||
|
from tavily import Client
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Tavily python package not found. "
|
||
|
"Please install it with `pip install tavily-python`."
|
||
|
)
|
||
|
|
||
|
tavily = Client(api_key=self.api_key or os.environ["TAVILY_API_KEY"])
|
||
|
max_results = self.k if not self.include_generated_answer else self.k - 1
|
||
|
response = tavily.search(
|
||
|
query=query,
|
||
|
max_results=max_results,
|
||
|
search_depth=self.search_depth.value,
|
||
|
include_answer=self.include_generated_answer,
|
||
|
include_domains=self.include_domains,
|
||
|
exclude_domains=self.exclude_domains,
|
||
|
include_raw_content=self.include_raw_content,
|
||
|
include_images=self.include_images,
|
||
|
**self.kwargs,
|
||
|
)
|
||
|
docs = [
|
||
|
Document(
|
||
|
page_content=result.get("content", "")
|
||
|
if not self.include_raw_content
|
||
|
else result.get("raw_content", ""),
|
||
|
metadata={
|
||
|
"title": result.get("title", ""),
|
||
|
"source": result.get("url", ""),
|
||
|
**{
|
||
|
k: v
|
||
|
for k, v in result.items()
|
||
|
if k not in ("content", "title", "url", "raw_content")
|
||
|
},
|
||
|
"images": response.get("images"),
|
||
|
},
|
||
|
)
|
||
|
for result in response.get("results")
|
||
|
]
|
||
|
if self.include_generated_answer:
|
||
|
docs = [
|
||
|
Document(
|
||
|
page_content=response.get("answer", ""),
|
||
|
metadata={
|
||
|
"title": "Suggested Answer",
|
||
|
"source": "https://tavily.com/",
|
||
|
},
|
||
|
),
|
||
|
*docs,
|
||
|
]
|
||
|
|
||
|
return docs
|