langchain/tests/unit_tests/agents/test_agent.py

51 lines
1.5 KiB
Python
Raw Normal View History

"""Unit tests for agents."""
from typing import Any, List, Mapping, Optional
from pydantic import BaseModel
from langchain.agents import Tool, initialize_agent
from langchain.llms.base import LLM
class FakeListLLM(LLM, BaseModel):
"""Fake LLM for testing that outputs elements of a list."""
responses: List[str]
i: int = -1
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
"""Increment counter, and then return response in that index."""
self.i += 1
print(self.i)
print(self.responses)
return self.responses[self.i]
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "fake_list"
def test_agent_bad_action() -> None:
"""Test react chain when bad action given."""
bad_action_name = "BadAction"
responses = [
f"I'm turning evil\nAction: {bad_action_name}\nAction Input: misalignment",
"Oh well\nAction: Final Answer\nAction Input: curses foiled again",
]
fake_llm = FakeListLLM(responses=responses)
tools = [
Tool("Search", lambda x: x, "Useful for searching"),
Tool("Lookup", lambda x: x, "Useful for looking up things in a table"),
]
agent = initialize_agent(
tools, fake_llm, agent="zero-shot-react-description", verbose=True
)
output = agent.run("when was langchain made")
assert output == "curses foiled again"