mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
52 lines
1.3 KiB
Python
52 lines
1.3 KiB
Python
|
from operator import itemgetter
|
||
|
|
||
|
from langchain.chat_models import ChatOpenAI
|
||
|
from langchain.prompts import ChatPromptTemplate
|
||
|
from langchain.pydantic_v1 import BaseModel
|
||
|
from langchain.schema.output_parser import StrOutputParser
|
||
|
from langchain.schema.runnable import ConfigurableField, RunnableParallel
|
||
|
|
||
|
from neo4j_advanced_rag.retrievers import (
|
||
|
hypothetic_question_vectorstore,
|
||
|
parent_vectorstore,
|
||
|
summary_vectorstore,
|
||
|
typical_rag,
|
||
|
)
|
||
|
|
||
|
template = """Answer the question based only on the following context:
|
||
|
{context}
|
||
|
|
||
|
Question: {question}
|
||
|
"""
|
||
|
prompt = ChatPromptTemplate.from_template(template)
|
||
|
|
||
|
model = ChatOpenAI()
|
||
|
|
||
|
retriever = typical_rag.as_retriever().configurable_alternatives(
|
||
|
ConfigurableField(id="strategy"),
|
||
|
default_key="typical_rag",
|
||
|
parent_strategy=parent_vectorstore.as_retriever(),
|
||
|
hypothetical_questions=hypothetic_question_vectorstore.as_retriever(),
|
||
|
summary_strategy=summary_vectorstore.as_retriever(),
|
||
|
)
|
||
|
|
||
|
chain = (
|
||
|
RunnableParallel(
|
||
|
{
|
||
|
"context": itemgetter("question") | retriever,
|
||
|
"question": itemgetter("question"),
|
||
|
}
|
||
|
)
|
||
|
| prompt
|
||
|
| model
|
||
|
| StrOutputParser()
|
||
|
)
|
||
|
|
||
|
|
||
|
# Add typing for input
|
||
|
class Question(BaseModel):
|
||
|
question: str
|
||
|
|
||
|
|
||
|
chain = chain.with_types(input_type=Question)
|