langchain/docs/extras/integrations/providers/weaviate.mdx

39 lines
2.1 KiB
Plaintext
Raw Normal View History

# Weaviate
>[Weaviate](https://weaviate.io/) is an open-source vector database. It allows you to store data objects and vector embeddings from
>your favorite ML models, and scale seamlessly into billions of data objects.
What is `Weaviate`?
- Weaviate is an open-source database of the type vector search engine.
- Weaviate allows you to store JSON documents in a class property-like fashion while attaching machine learning vectors to these documents to represent them in vector space.
- Weaviate can be used stand-alone (aka bring your vectors) or with a variety of modules that can do the vectorization for you and extend the core capabilities.
- Weaviate has a GraphQL-API to access your data easily.
- We aim to bring your vector search set up to production to query in mere milliseconds (check our [open source benchmarks](https://weaviate.io/developers/weaviate/current/benchmarks/) to see if Weaviate fits your use case).
- Get to know Weaviate in the [basics getting started guide](https://weaviate.io/developers/weaviate/current/core-knowledge/basics.html) in under five minutes.
**Weaviate in detail:**
`Weaviate` is a low-latency vector search engine with out-of-the-box support for different media types (text, images, etc.). It offers Semantic Search, Question-Answer Extraction, Classification, Customizable Models (PyTorch/TensorFlow/Keras), etc. Built from scratch in Go, Weaviate stores both objects and vectors, allowing for combining vector search with structured filtering and the fault tolerance of a cloud-native database. It is all accessible through GraphQL, REST, and various client-side programming languages.
## Installation and Setup
Install the Python SDK:
```bash
pip install weaviate-client
```
## Vector Store
There exists a wrapper around `Weaviate` indexes, allowing you to use it as a vectorstore,
whether for semantic search or example selection.
To import this vectorstore:
```python
from langchain.vectorstores import Weaviate
```
2023-07-25 04:20:32 +00:00
For a more detailed walkthrough of the Weaviate wrapper, see [this notebook](/docs/integrations/vectorstores/weaviate.html)