mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
70 lines
1.9 KiB
Python
70 lines
1.9 KiB
Python
|
from langchain_community.vectorstores import Milvus
|
||
|
from langchain_core.output_parsers import StrOutputParser
|
||
|
from langchain_core.prompts import ChatPromptTemplate
|
||
|
from langchain_core.pydantic_v1 import BaseModel
|
||
|
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
||
|
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
|
||
|
|
||
|
# Example for document loading (from url), splitting, and creating vectorstore
|
||
|
|
||
|
"""
|
||
|
# Load
|
||
|
from langchain_community.document_loaders import WebBaseLoader
|
||
|
|
||
|
loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")
|
||
|
data = loader.load()
|
||
|
|
||
|
# Split
|
||
|
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
||
|
|
||
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
|
||
|
all_splits = text_splitter.split_documents(data)
|
||
|
|
||
|
# Add to vectorDB
|
||
|
vectorstore = Milvus.from_documents(documents=all_splits,
|
||
|
collection_name="rag_milvus",
|
||
|
embedding=OpenAIEmbeddings(),
|
||
|
drop_old=True,
|
||
|
)
|
||
|
retriever = vectorstore.as_retriever()
|
||
|
"""
|
||
|
|
||
|
# Embed a single document as a test
|
||
|
vectorstore = Milvus.from_texts(
|
||
|
["harrison worked at kensho"],
|
||
|
collection_name="rag_milvus",
|
||
|
embedding=OpenAIEmbeddings(),
|
||
|
drop_old=True,
|
||
|
connection_args={
|
||
|
"uri": "http://127.0.0.1:19530",
|
||
|
},
|
||
|
)
|
||
|
retriever = vectorstore.as_retriever()
|
||
|
|
||
|
# RAG prompt
|
||
|
template = """Answer the question based only on the following context:
|
||
|
{context}
|
||
|
|
||
|
Question: {question}
|
||
|
"""
|
||
|
prompt = ChatPromptTemplate.from_template(template)
|
||
|
|
||
|
# LLM
|
||
|
model = ChatOpenAI()
|
||
|
|
||
|
# RAG chain
|
||
|
chain = (
|
||
|
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
|
||
|
| prompt
|
||
|
| model
|
||
|
| StrOutputParser()
|
||
|
)
|
||
|
|
||
|
|
||
|
# Add typing for input
|
||
|
class Question(BaseModel):
|
||
|
__root__: str
|
||
|
|
||
|
|
||
|
chain = chain.with_types(input_type=Question)
|